Tensorflow中提供了通过变量名称来创建和获取一个变量的机制。通过这个机制,在不同的函数中可以直接通过变量的名字来使用变量,而不需要将变量通过参数的形式到处传递。该机制主要是通过tf.get variable和tf.variable scope函数来实现的。下面将分别介绍两个函数的使用。 如果需要通过tf.get variable获取一个已经创建的变量,需要通过tf.variable sc ...
2017-12-29 00:22 0 3101 推荐指数:
一、矩阵的基本操作 import tensorflow as tf # 1.1矩阵操作 sess = tf.InteractiveSession() x = tf.ones([2, 3], "float32") print("tf.ones():", sess.run(x ...
当我们的神经网络拥有很复杂的模块时,我们使用TensorFlow提供的变量作用域(tf.variable_scope)来管理这些变量。 变量作用域的两个核心方法: 在上一篇文章中,我们已经有用到这两个方法,这一篇我们聚焦在这两方法的具体说明上。 tf.get_variable ...
1.TensorFlow 系统架构: 分为设备层和网络层、数据操作层、图计算层、API 层、应用层。其中设备层和网络层、数据操作层、图计算层是 TensorFlow 的核心层。 2.TensorFlow 设计理念: (1)将图的定义和图的运行完全分开。TensorFlow 完全 ...
name/variable_scope 的作用 充分理解 name / variable_scope TensorFlow 入门笔记 当一个神经网络比较复杂、参数比较多时,就比较需要一个比较好的方式来传递和管理这些参数。而Tensorflow提供了通过变量名称来创建 ...
TensorFlow用张量这种数据结构来表示所有的数据。用一阶张量来表示向量,如:v = [1.2, 2.3, 3.5] ,如二阶张量表示矩阵,如:m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]],可以看成是方括号嵌套的层数。 1、编辑器 编写tensorflow代码 ...
管理,另外这样一来代码的封装性受到极大影响。因此,TensorFlow提供了一种变量管理方法:变量作用 ...
本系列笔记记录了学习TensorFlow2的过程,主要依据 https://github.com/dragen1860/Deep-Learning-with-TensorFlow-book 进行学习 首先需要明确TensorFlow 是一个面向于深度学习算法的科学计算库,内部数据保存 ...