一、模型保存/加载 1.1 所有模型参数 训练过程中,有时候会由于各种原因停止训练,这时候我们训练过程中就需要注意将每一轮epoch的模型保存(一般保存最好模型与当前轮模型)。一般使用pytorch里面推荐的保存方法。该方法保存的是模型的参数。 对应的加载模型方法为(这种 ...
PyTorch参数初始化和Finetune reference: https: zhuanlan.zhihu.com p ...
2017-12-18 21:44 0 1017 推荐指数:
一、模型保存/加载 1.1 所有模型参数 训练过程中,有时候会由于各种原因停止训练,这时候我们训练过程中就需要注意将每一轮epoch的模型保存(一般保存最好模型与当前轮模型)。一般使用pytorch里面推荐的保存方法。该方法保存的是模型的参数。 对应的加载模型方法为(这种 ...
使用了一段时间PyTorch,感觉爱不释手(0-0),听说现在已经有C++接口。在应用过程中不可避免需要使用Finetune/参数初始化/模型加载等。 模型保存/加载 1.所有模型参数 训练过程中,有时候会由于各种原因停止训练,这时候我们训练过程中就需要注意将每一轮epoch的模型保存 ...
利用pytorch 定义自己的网络模型时,需要继承toch.nn.Module 基类。 基类中有parameters()、modules()、children()等方法 看一下parameters方法 看一下modules()方法 看一下 ...
在定义网络时,pythorch会自己初始化参数,但也可以自己初始化,详见官方实现 ...
1.使用apply() 举例说明: Encoder :设计的编码其模型 weights_init(): 用来初始化模型 model.apply():实现初始化 返回: 2.直接在定义网络时定义 然后调用即可 ...
from:http://blog.csdn.net/VictoriaW/article/details/72872036 之前我学习了神经网络中权值初始化的方法 那么如何在pytorch里实现呢。 PyTorch提供了多种参数初始化函数: torch.nn.init.constant ...
有时间再写。 ...
一、使用Numpy初始化:【直接对Tensor操作】 对Sequential模型的参数进行修改: 对Module模型 的参数初始化: 对于 Module 的参数初始化,其实也非常简单,如果想对其中的某层进行初始化,可以直接 ...