AVL树是有平衡条件的二叉搜索树。这个平衡条件必须容易保持,而且需要保证树的深度是O(logN)。 AVL=BBST 作为二叉搜索树的最后一部分,我们来介绍最为经典的一种平衡二叉搜索树:AVL树。回顾此前的几节,我们首先介绍的是二叉查找树 ...
本篇随笔主要从以下三个方面介绍树的平衡: :BST不平衡问题 :BST 旋转 :AVL Tree 一:BST不平衡问题的解析 之前有提过普通BST的一些一些缺点,例如BST的高度是介于lgN和N之间的,如果是N的的话,显然效率很低,不是我们需要的 但是在实际情况中,BST的高度h N的情况却经常出现,例如下图所示。在BST中search,insert的running time都等于BST的高度h, ...
2017-12-16 13:46 0 1128 推荐指数:
AVL树是有平衡条件的二叉搜索树。这个平衡条件必须容易保持,而且需要保证树的深度是O(logN)。 AVL=BBST 作为二叉搜索树的最后一部分,我们来介绍最为经典的一种平衡二叉搜索树:AVL树。回顾此前的几节,我们首先介绍的是二叉查找树 ...
AVL树是高度的平衡二插搜索树,其左子树和右子树的高度之差不超过1(树中的左子树和右子树都是AVL树),维持这个高度之差就要控制它的平衡因子。那么判断一颗AVL树是否平衡就需要判断它的左子树和右子树高度差是否为1,并且子树也遵循这个原则。这里我们可以用递归的方法来判断这颗二叉树是否为平衡 ...
AVL树平衡旋转详解 概述 AVL树又叫做平衡二叉树。前言部分我也有说到,AVL树的前提是二叉排序树(BST或叫做二叉查找树)。由于在生成BST树的过程中可能会出现线型树结构,比如插入的顺序是:1, 2, 3, 4, 5, 6, 7... ...
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one ...
目录 简介 AVL的特性 AVL的构建 AVL的搜索 AVL的插入 AVL的删除 简介 平衡二叉搜索树是一种特殊的二叉搜索树。为什么会有平衡二叉搜索树呢? 考虑一下二叉搜索树的特殊情况,如果一个二叉搜索树所有的节点都是右节点,那么这个二叉 ...
二叉查找树在极端情况下会演变成一棵只有一侧子孩子的树,例如每个非叶子只有左孩子或者右孩子,这时候在查找的时候就需要遍历这棵树来找到目标值,它的快速搜索价值就体现不出来了,如果这棵搜索树在构建的时候,能够平衡左右子树的身高差,使得左右子树身高差不超过1,那它的搜索效率就是O(lgn),平衡二叉树 ...
一、基本概念 AVL树既是平衡二叉树。AVL树的定义首先要求该树是二叉查找树(满足排序规则),并在此基础上增加了每个节点的平衡因子的定义,一个节点的平衡因子是该节点的左子树树高减去右子树树高的值 ...
1、概念: AVL树本质上还是一个二叉搜索树,不过比二叉搜索树多了一个平衡条件:每个节点的左右子树的高度差不大于1。 二叉树的应用是为了弥补链表的查询效率问题,但是极端情况下,二叉搜索树会无限接近于链表,这种时候就无法体现二叉搜索树在查询时的高效率,而最初 ...