本笔记主要记录学习《机器学习》的总结体会。如有理解不到位的地方,欢迎大家指出,我会努力改正。 在学习《机器学习》时,我主要是通过Andrew Ng教授在mooc上提供的《Machine Learning》课程,不得不说Andrew Ng老师在讲授这门课程时,真的很用心,特别是编程 ...
了解神经网络原理的同学们应该都知道,隐藏层越多,最终预测结果的准确度越高,但是计算量也越大,在上一篇的基础上,我们手动添加一个隐藏层,代码如下 主要参考自多层感知机 从 开始 : from mxnet import gluon from mxnet import ndarray as nd import matplotlib.pyplot as plt import mxnet as mx fro ...
2017-12-13 21:50 3 936 推荐指数:
本笔记主要记录学习《机器学习》的总结体会。如有理解不到位的地方,欢迎大家指出,我会努力改正。 在学习《机器学习》时,我主要是通过Andrew Ng教授在mooc上提供的《Machine Learning》课程,不得不说Andrew Ng老师在讲授这门课程时,真的很用心,特别是编程 ...
系列文章目录: 感知机 线性回归 非线性问题 多项式回归 岭回归 逻辑回归 算法介绍 今天我们一起来学习使用非常广泛的分类算法:逻辑回归,是的,你没有看错,虽然它名字里有回归,但是它确实是个分类算法,作为除了感知机以外,最最最简单的分类算法,下面我们把它与感知机 ...
1、Logistic回归的本质 逻辑回归是假设数据服从伯努利分布,通过极大似然函数的方法,运用梯度上升/下降法来求解参数,从而实现数据的二分类。 1.1、逻辑回归的基本假设 ①伯努利分布:以抛硬币为例,每次试验中出现正面的概率为P,那么出现负面的概率为1-P。那么如果假设hθ(x)为样本为正 ...
参考资料 <PYTHON_MACHINE_LEARNING> chapter3 A Tour of Machine Learning Classifers U ...
1. Classification 这篇文章我们来讨论分类问题(classification problems),也就是说你想预测的变量 y 是一个离散的值。我们会使用逻辑回归算法来解决分类问题。 之前的文章中,我们讨论的垃圾邮件分类实际上就是一个分类问题。类似的例子还有很多,例如一个在线 ...
一、逻辑回归的概念 逻辑回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,经济预测等领域。逻辑回归从本质来说属于二分类问题,是基于Sigmoid函数(又叫“S型函数”)的有监督二类分类模型。 二、Sigmoid函数 Sigmoid函数公式 ...
1、逻辑函数 假设数据集有n个独立的特征,x1到xn为样本的n个特征。常规的回归算法的目标是拟合出一个多项式函数,使得预测值与真实值的误差最小: 而我们希望这样的f(x)能够具有很好的逻辑判断性质,最好是能够直接表达具有特征x的样本被分到某类的概率。比如f(x)>0.5的时候能够表示 ...
注:最近开始学习《人工智能》选修课,老师提纲挈领的介绍了一番,听完课只了解了个大概,剩下的细节只能自己继续摸索。 从本质上讲:机器学习就是一个模型对外界的刺激(训练样本)做出反应,趋利避害(评价标准)。 1. 什么是逻辑回归? 许多人对线性回归都比较熟悉,但知道逻辑回归的人可能就要 ...