数据集中含有太多特征时,需要简化数据。降维不是删除部分特征,而是将高维数据集映射到低维数据集,映射后的数据集更简洁,方便找出对结果贡献最大的部分特征。 简化数据的原因: 1、使得数据集更易使用 2、降低很多算法的计算开销 3、去除噪声 4、使得结果易懂 PCA:principal ...
要理解什么是降维,书上给出了一个很好但是有点抽象的例子。 说,看电视的时候屏幕上有成百上千万的像素点,那么其实每个画面都是一个上千万维度的数据 但是我们在观看的时候大脑自动把电视里面的场景放在我们所能理解的三维空间来理解,这个很自然的过程其实就是一个 降维 dimensionallity reduction 的过程 降维有什么作用呢 数据在低维下更容易处理 更容易使用 相关特征,特别是重要特征更 ...
2017-12-03 16:18 0 1663 推荐指数:
数据集中含有太多特征时,需要简化数据。降维不是删除部分特征,而是将高维数据集映射到低维数据集,映射后的数据集更简洁,方便找出对结果贡献最大的部分特征。 简化数据的原因: 1、使得数据集更易使用 2、降低很多算法的计算开销 3、去除噪声 4、使得结果易懂 PCA:principal ...
有很多,而且分为线性降维和非线性降维,本篇文章主要讲解线性降维中的主成分分析法(PCA)降维。顾名思义,就 ...
转载请声明出处:http://blog.csdn.net/zhongkelee/article/details/44064401 一、PCA简介 1. 相关背景 上完陈恩红老师的《机器学习与知识发现》和季海波老师的《矩阵代数》两门课之后,颇有体会。最近在做主成分分析和奇异值分解 ...
降维目的:样本数据为高维数据时,对数据进行降维操作,避免模型出现过拟合。 1.过拟合含义:训练集误差小,验证集误差大。 过拟合三种解决方案:1)增加数据集;2)正则化; 3)降维。 2.高维灾难: 具有高维度特征的数据易导致高维灾难。 高维灾难的几何角度解释: 高维灾难含义:高维 ...
下面写下用pca对数据进行降维处理的过程: Python源代码如下: 上面代码中lowDDataMat为降维后的数据集,reconMat为重构的数据集;绘出原始数据和降维后的数据图如下: ...
PCA要做的事降噪和去冗余,其本质就是对角化协方差矩阵。 一.预备知识 1.1 协方差分析 对于一般的分布,直接代入E(X)之类的就可以计算出来了,但真给你一个具体数值的分布,要计算协方差矩阵,根据这个公式来计算,还真不容易反应过来。网上值得参考的资料也不多,这里用一个 ...
MATLAB实例:PCA降维 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. iris数据 5.1,3.5,1.4,0.2,1 4.9,3.0,1.4,0.2,1 4.7,3.2,1.3,0.2,1 ...
PCA 主成分分析方法,LDA 线性判别分析方法,可以认为是有监督的数据降维。下面的代码分别实现了两种降维方式: 结果如下 ...