似然与概率 https://blog.csdn.net/u014182497/article/details/82252456 在统计学中,似然函数(likelihood function,通常简写为likelihood,似然)是一个非常重要的内容,在非正式场合似然和概率 ...
最近在看深度学习的 花书 也就是Ian Goodfellow那本了 ,第五章机器学习基础部分的解释很精华,对比PRML少了很多复杂的推理,比较适合闲暇的时候翻开看看。今天准备写一写很多童鞋们w未必完全理解的最大似然估计的部分。 单纯从原理上来说,最大似然估计并不是一个非常难以理解的东西。最大似然估计不过就是评估模型好坏的方式,它是很多种不同评估方式中的一种。未来准备写一写最大似然估计与它的好朋友们 ...
2017-11-27 13:38 1 10477 推荐指数:
似然与概率 https://blog.csdn.net/u014182497/article/details/82252456 在统计学中,似然函数(likelihood function,通常简写为likelihood,似然)是一个非常重要的内容,在非正式场合似然和概率 ...
为: θ2 。 首先我们来看,如何通过最大似然估计的形式估计均匀分布的期望。均匀分布的概率密度函数为: ...
参考:Fitting a Model by Maximum Likelihood 最大似然估计是用于估计模型参数的,首先我们必须选定一个模型,然后比对有给定的数据集,然后构建一个联合概率函数,因为给定了数据集,所以该函数就是以模型参数为自变量的函数,通过求导我们就能得到使得该函数值(似然值)最大 ...
目录 信息量 熵 相对熵(Relative Entropy) 交叉熵(Cross Entropy) 本文介绍交叉熵的概念,涉及到信息量、熵、相对熵、交叉熵; 信息量 信息量是用来衡量一个事件发生的不确定性,一个事件发生的概率越大,不确定性越小 ...
二次代价函数 $C = \frac{1} {2n} \sum_{x_1,...x_n} \|y(x)-a^L(x) \|^2$ 其中,C表示代价函数,x表示样本,y表示实际值,a表示输出值,n表示 ...
机器学习的面试题中经常会被问到交叉熵(cross entropy)和最大似然估计(MLE)或者KL散度有什么关系,查了一些资料发现优化这3个东西其实是等价的。 熵和交叉熵 提到交叉熵就需要了解下信息论中熵的定义。信息论认为: 确定的事件没有信息,随机事件包含最多的信息。 事件信息 ...
二分~多分~Softmax~理预 一、简介 在二分类问题中,你可以根据神经网络节点的输出,通过一个激活函数如Sigmoid,将其转换为属于某一类的概率,为了给出具体的分类结果,你可以取0.5作为阈值,凡是大于0.5的样本被认为是正类,小于0.5则认为是负类 然而这样的做法并不容易推广 ...
交叉熵 分类问题常用的损失函数为交叉熵(Cross Entropy Loss)。 交叉熵描述了两个概率分布之间的距离,交叉熵越小说明两者之间越接近。 原理这篇博客介绍的简单清晰: https://blog.csdn.net/xg123321123/article/details ...