首先,恭喜你读到了咪博士的这篇文章。本文可以说是该系列最重要、最核心的文章。你对线性代数的一切困惑,根源就在于没有真正理解矩阵到底是什么。读完咪博士的这篇文章,你一定会有一种醍醐灌顶、豁然开朗的感觉! 咱们先来说说啥叫变换。本质上,变换就是函数。 例如,你输入一个向量[ 5 7 ] [57 ...
向量是线性代数最基础 最基本的概念之一,要深入理解线性代数的本质,首先就要搞清楚向量到底是什么 向量之所以让人迷糊,是因为我们在物理 数学,以及计算机等许多地方都见过它,但又没有彻底弄懂,以至于似是而非。 . 物理学中的向量 物理学中的向量:空间中的箭头,由长度和它所指的方向决定 而且,在物理学中,你可以在空间中自由地移动向量,只要保持向量的长度和所指的方向不变,向量便保持不变,即移动前后的向量是 ...
2017-11-21 10:01 0 1197 推荐指数:
首先,恭喜你读到了咪博士的这篇文章。本文可以说是该系列最重要、最核心的文章。你对线性代数的一切困惑,根源就在于没有真正理解矩阵到底是什么。读完咪博士的这篇文章,你一定会有一种醍醐灌顶、豁然开朗的感觉! 咱们先来说说啥叫变换。本质上,变换就是函数。 例如,你输入一个向量[ 5 7 ] [57 ...
1. 线性组合 接下来我们要换一个角度来看向量。以二维平面直角坐标系为例,i, j 分别是沿 2 个坐标轴方向的单位向量。那么坐标平面上的其他向量,例如 [ 3 -2 ] [3−与 i, j 是什么关系呢? 将向量 i 沿水平向右的方向拉升 3 倍,向量 j 沿竖直向下的方向拉升 2 倍 ...
视频资料:https://www.bilibili.com/video/av6731067 一、向量是什么 物理专业:向量是空间中的箭头,由长度和方向决定 计算机专业:向量是有序的数字列表 数学家:向量可以是任何东西,只要保证向量相加、数字与向量的相乘有意义即可 (1)当在 ...
前段时间在 哔哩哔哩 上偶然发现了 3blue1brown 精美的动画,配上生动的讲解,非常适合帮助建立数学的形象思维 其中两大系列,非常值得反复观看: 线性代数的本质(Essence of linear algebra) 微积分的本质(Essence of calculus ...
考察$\boldsymbol u\cdot\boldsymbol y$的几何意义。 把向量$\boldsymbol y$拆成两个分量:$\boldsymbol y=\boldsymbol{\hat y}+\boldsymbol z$。其中$\boldsymbol{\hat y}=\alpha ...
二、向量的基本几何意义 自由向量: 大小和方向(物理:矢量) 向量的数学表示: 把空间中所有的向量的尾部都拉到坐标原点,这样N维点空间可以与N维向量空间建立一一对应关系:N维点空间中点(0,0,0…0)取作原点,那么每一个点都可以让一个向量和它对应,这个向量就是从坐标原点出发到这个点 ...
一、什么是线性代数 线性与非线性: 非线性问题则可以在一定基础上转化为线性问题求解 线性空间: 对所谓的要满足"加法"和"数乘"等八条公理的元素的集合 线性函数: 几何意义:过原点的直线、平面、超平面 代数意义:可加性、比例性 可加性(线性的可加性既是没有互相激励的累加,也是 ...
1.什么是向量 我们分别从数学专业、计算机专业、数学专业的眼中看着三种形式的向量表示: 向量的三种形式 线性代数想表达的就是“上述三种形式是相互等价的,可以相互转化”, 为数学分析、可视化提供了一种方式,以一种清晰明了的方式展示数据,更加形象、直观的了解数据的形式及本质 ...