tan和sec常用公式 我一直认为三角函数中只有sin和cos是友好的,其它都是变态。现在不得不接触一些变态: 这些变态的相关等式: 等式的证明 这个稍有点麻烦,先要做一些前置工作。 三角替换 示例1 ∫sec4xdx = ? 示例 ...
sin和cos的常用公式 基本公式: 半角公式: 微分公式: 积分公式: 三角替换 示例 根据微分公式,cosxdx dsinx 示例 示例 半角公式 示例 示例 解法 : 解法 : 综合示例 示例 示例 示例 三角函数和x的倍数都不一样,我们的目标是将x的倍数和三角函数转换为一致。 示例 y sin ax 绕x轴旋转一周,ax的定义域是 , ,求旋转后图形的体积。 根据圆盘法 圆盘法参见数学笔记 ...
2017-11-15 22:57 0 3747 推荐指数:
tan和sec常用公式 我一直认为三角函数中只有sin和cos是友好的,其它都是变态。现在不得不接触一些变态: 这些变态的相关等式: 等式的证明 这个稍有点麻烦,先要做一些前置工作。 三角替换 示例1 ∫sec4xdx = ? 示例 ...
在二重积分中,极坐标替换是一种特殊情况,更一般的变量替换后的面积元是通过雅可比行列式来关联,替换后的积分域也会随之变动。 变量替换 二重积分可以计算面积,现在有一个椭圆 (x/a)2 + (y/b)2 = 1,如何计算该椭圆的面积? 很容易写出Area = ∫∫Rdxdy ...
球坐标系是三维坐标系的一种,用以确定三维空间中点、线、面以及体的位置,它以坐标原点为参考点,由方位角、仰角和距离构成。球坐标系在地理学、天文学中都有着广泛应用。 球坐标系 球坐标中是这样表示空间中一点的:用ρ表示点到原点的距离,0 ≤ ρ≤ +∞;在ρz平面上,从z轴正半轴向ρ偏转 ...
函数关系 还有更多的数据具体看:https://baike.baidu.com/item/%E4%B8%89%E8%A7%92%E5%87%BD%E6%95% ...
定积分是积分的一种,是函数f(x)在区间[a,b]上的积分和的极限。这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式),其它一点关系都没有!一个函数,可以存在不定积分 ...
不是所有被积函数都能解析地写出原函数。对于那些可能写出来的函数,也需要一定的积分技巧才能随心所欲,分部积分正是其中很重要的一种技巧。 基本公式 部分积分演变自积分的乘法法则: 示例1 看起来很难对付,现在尝试用部分积分解决。 令u = lnx,u’ = (lnx ...
微积分第一基本定理 如果F’(x) = f(x),那么: 如果将F用不定积分表示,F =∫f(x)dx,微积分第一基本定理可以看作为是两个不定积分赋予特定的值,再用符号连接起来,计算具体的数值。 这里引入一个新符号: 于是: 示例1 示例 ...
微积分第二基本定理 这里需要注意t与x的关系,它的意思是一个函数能够找到相应的积分方式去表达。如果F’=f,则: 下面是第二基本定理的证明。 证明需要采用画图法,如上图所示,曲线是y=f(x),两个阴影部分的面积分别是G(x)和ΔG(x),其中: 当Δx足够 ...