原文:CNN-卷积层和池化层学习

卷积神经网络 CNN 由输入层 卷积层 激活函数 池化层 全连接层组成,即INPUT CONV RELU POOL FC 卷积层:用它来进行特征提取,如下: 输入图像是 , 是它的深度 即R G B ,卷积层是一个 的filter 感受野 ,这里注意:感受野的深度必须和输入图像的深度相同。通过一个filter与输入图像的卷积可以得到一个 的特征图,上图是用了两个filter得到了两个特征图 我们通 ...

2017-10-25 19:55 0 1548 推荐指数:

查看详情

卷积学习

http://www.cnblogs.com/zf-blog/p/6075286.html 卷积神经网络(CNN)由输入卷积、激活函数、、全连接组成,即INPUT-CONV-RELU-POOL-FC (1)卷积:用它来进行特征提取,如下: 输入图像是32*32*3,3 ...

Thu Sep 21 17:51:00 CST 2017 0 1292
CNN卷积 反向传播

参考:https://blog.csdn.net/kyang624823/article/details/78633897 卷积 反向传播: 1,CNN的前向传播 a)对于卷积卷积核与输入矩阵对应位置求积再求和,作为输出矩阵对应位置的值。如果输入矩阵inputX为M*N大小 ...

Tue Jul 23 18:18:00 CST 2019 0 1870
Tensorflow之CNN卷积padding规则

padding的规则 ·   padding=‘VALID’时,输出的宽度和高度的计算公式(下图gif为例)          输出宽度:output_width = (in_ ...

Sun Dec 08 07:02:00 CST 2019 0 361
卷积

卷积神经网络是在BP神经网络的改进,与BP类似,都采用了前向传播计算输出值,反向传播调整权重和偏置;CNN与标准的BP最大的不同是:CNN中相邻之间的神经单元并不是全连接,而是部分连接,也就是某个神经单元的感知区域来自于上层的部分神经单元,而不是像BP那样与所有的神经单元相连接。CNN ...

Thu Dec 01 06:32:00 CST 2016 0 9036
卷积神经网络_(1)卷积学习

卷积神经网络(CNN)由输入卷积、激活函数、、全连接组成,即INPUT-CONV-RELU-POOL-FC (1)卷积:用它来进行特征提取,如下: 输入图像是32*32*3,3是它的深度(即R、G、B),卷积是一个5*5*3的filter(感受野),这里注意:感受野的深度 ...

Fri Nov 18 05:26:00 CST 2016 6 98094
卷积

构建了最简单的网络之后,是时候再加上卷积化了。这篇,虽然我还没开始构思,但我知道,一 ...

Mon Aug 19 01:20:00 CST 2019 0 1227
CNN学习笔记:

CNN学习笔记:   (Pooling)是卷积神经网络中另一个重要的概念,它实际上是一种形式的降采样。有多种不同形式的非线性函数,而其中“最大(Max pooling)”是最为常见的。它是将输入的图像划分为若干个矩形区域,对每个子区域输出最大值。直觉上,这种机制能够 ...

Sat Feb 09 04:23:00 CST 2019 0 23877
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM