1.TensorFlow 系统架构: 分为设备层和网络层、数据操作层、图计算层、API 层、应用层。其中设备层和网络层、数据操作层、图计算层是 TensorFlow 的核心层。 2.TensorFlow 设计理念: (1)将图的定义和图的运行完全分开。TensorFlow 完全 ...
一 矩阵的基本操作 import tensorflow as tf . 矩阵操作 sess tf.InteractiveSession x tf.ones , , float print tf.ones : , sess.run x tensor , , , , , x tf.ones like tensor print ones like给定的tensor类型大小一致的tensor,其所有元素为 ...
2017-10-25 15:02 0 4262 推荐指数:
1.TensorFlow 系统架构: 分为设备层和网络层、数据操作层、图计算层、API 层、应用层。其中设备层和网络层、数据操作层、图计算层是 TensorFlow 的核心层。 2.TensorFlow 设计理念: (1)将图的定义和图的运行完全分开。TensorFlow 完全 ...
一、深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI, Artificial Intelligence)。 深度学习是学习样本数据的内在规律和表示层 ...
TensorFlow用张量这种数据结构来表示所有的数据。用一阶张量来表示向量,如:v = [1.2, 2.3, 3.5] ,如二阶张量表示矩阵,如:m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]],可以看成是方括号嵌套的层数。 1、编辑器 编写tensorflow代码 ...
Tensorflow中提供了通过变量名称来创建和获取一个变量的机制。通过这个机制,在不同的函数中可以直接通过变量的名字来使用变量,而不需要将变量通过参数的形式到处传递。该机制主要是通过tf.get_variable和tf.variable_scope函数来实现的。下面将分别介绍两个函数的使用 ...
本系列笔记记录了学习TensorFlow2的过程,主要依据 https://github.com/dragen1860/Deep-Learning-with-TensorFlow-book 进行学习 首先需要明确TensorFlow 是一个面向于深度学习算法的科学计算库,内部数据保存 ...
1.用图(graph)来表示计算任务 2.用op(opreation)来表示图中的计算节点,图有默认的计算节点,构建图的过程就是在其基础上加节点。 3.用tensor表示每个op的输入输出数据,可以使用feed,fetch可以为任意操作设置输入和获取输出。 4. ...
tf.train.Saver类的使用 保存模型: 加载模型: 在加载模型时,也是先定义tensorflow计算图上的所有运算,但不需要运行变量的初始化,因为变量的值可以通过已经保存的模型加载进来。如果不希望重复定义图上的运算,也可以直接加载已经 持久化的图 ...
使用TFLearn自定义模型:TFLearn集成在了tf.contirb.learn里 使用TFLearn解决iris分类问题: 预测正弦函数: ...