主成分分析 (principal component analysis, PCA) 是投影法的典型代表。投影法是指将高维的数据向低维投影,投影的方向可通过特征值分析等方法来确定。 具体来说,假设我们有一个具有 \(n\) 维特征的数据集,共有 \(m\) 个样本点,我们希望这 \(m\) 个样本 ...
近邻成分分析 NCA 算法 以上内容转载自:http: blog.csdn.net chlele article details 度量学习 在机器学习中,对高维数据进行降维的主要目的是找到一个合适的低维空间,在该空间中进行学习能比原始空间性能更好。每个空间对应了在样本属性上定义的一个距离度量,而寻找合适的空间,本质上就是寻找一个合适的距离度量。度量学习 metric learning 的基本动机 ...
2017-10-23 22:52 0 1918 推荐指数:
主成分分析 (principal component analysis, PCA) 是投影法的典型代表。投影法是指将高维的数据向低维投影,投影的方向可通过特征值分析等方法来确定。 具体来说,假设我们有一个具有 \(n\) 维特征的数据集,共有 \(m\) 个样本点,我们希望这 \(m\) 个样本 ...
机器学习——聚类分析和主成分分析 在机器学习中,非监督性学习主要用来分类。其中重要的两种就是聚类分析和主成分分析。这两类算法在数据压缩和数据可视化方面有着广泛的应用。 所谓无监督学习是指训练集里面只有点\(\{x^{(1)},x^{(2)},\ldots,x^{(m ...
#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得; #注:此笔记是我自己认为本节课里比较重要、难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点; #标记为<补充>的是我自己加的内容而非课堂内容,参考文献列于文末。博主能力有限,若有错误,恳请指正; #------------------------------------------------ ...
一:引入问题 首先看一个表格,下表是某些学生的语文,数学,物理,化学成绩统计: 首先,假设这些科目成绩不相关,也就是说某一科目考多少分与其他科目没有关系,那么如何判断三个学生的优秀程度呢?首先我们一眼就能看出来,数学,物理,化学这三门课的成绩构成了这组数据的主成分(很显然,数学 ...
1. 主成分基本思想 主成分基本思想:在主成分分析中,首先对给定数据进行规范化,使得数据每一个变量的平均值维0,方差为1,之后对数据进行正交变换,原来由线性相关变量表示的数据,通过正交变换变成由若干个线性无关的新变量表示的数据。新变量是可能的正交变换中变量的方差的和最大的,方差表示了新变量上信息 ...
本文介绍独立成分分析(ICA),同 PCA 类似,我们是要找到一个新的基来表示数据,但目的就不一样了。 鸡尾酒会问题:n 个人在一个 party 上同时说话,n 个麦克风放置在房间的不同位置,因为每个麦克风跟每个人的距离都不一样,所以它们记录的说话者重叠的声音也不一样。根据麦克风记录的声音 ...
,可以解释为这两个变量反 映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关 ...
数据的存储空间,让算法提速; 也可以是将数据降到二维或者三维进行可视化 (二)主成分分析法在做什么 ...