1.基于树的模型比线性模型更好吗? 如果我可以使用逻辑回归解决分类问题和线性回归解决回归问题,为什么需要使用树模型? 我们很多人都有这个问题。 实际上,你可以使用任何算法。 这取决于你要解决的问题类型。 其中有一些关键因素,它们将帮助你决定使用哪种算法: 如果因变量和自变量之间的关系 ...
写在前面的话 趁着现在我还是高中数理化老师,偶尔兼职英语老师的时候赶紧抓紧时间写点有关计算机科学技术的东西。一来是表示我对计算机的热爱,二来,当然是最重要的咯,满足一下我强大的虚荣心。哈哈哈哈 想想高中数学物理化学老师在折腾计算机,是不是有种瞬间吊炸天的感觉。 这个系列我写了一个月了,之后会陆陆续续的放出来的。希望对大家有一点点帮助。如果您没有看懂我在写啥,那一定是我错了,讲的不够清楚。世界上没有 ...
2017-10-20 15:28 0 1329 推荐指数:
1.基于树的模型比线性模型更好吗? 如果我可以使用逻辑回归解决分类问题和线性回归解决回归问题,为什么需要使用树模型? 我们很多人都有这个问题。 实际上,你可以使用任何算法。 这取决于你要解决的问题类型。 其中有一些关键因素,它们将帮助你决定使用哪种算法: 如果因变量和自变量之间的关系 ...
1. 决策树的定义 2. 决策树的分支:分类与回归 3. 随机森林软件隔支持向量机 4. 决策树处理缺失数据 5. 决策树的剪枝 1. 决策树的定义 决策树,顾名思义,就是用来决策的树,通常来说,决策树分为C4.5,CART等,其实他们都是一个东西,区别就是在 ...
1. 决策树算法 1.1 背景知识 信息量\(I(X)\):指一个样本/事件所蕴含的信息,如果一个事情的概率越大,那么就认为该事件所蕴含的信息越少,确定事件不携带任何信息量 \(I(X)=-log(p(x))\) 信息熵\(H(X)\):用来描述系统信息量 ...
算法思想 决策树(decision tree)是一个树结构(可以是二叉树或非二叉树)。 其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别。 使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出 ...
利用ID3算法来判断某天是否适合打网球。 (1)类别属性信息熵的计算由于未分区前,训练数据集中共有14个实例, 其中有9个实例属于yes类(适合打网球的),5个实例属于no类(不适合打网球), 因此分区前类别属性的熵为: (2)非类别属性信息熵 ...
###决策树基础概念 在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy (熵) 表示的是系统的凌乱程度,它是决策树的决策依据,熵的概念来源于香侬的信息论。 ###决策树的决策过程 选择分裂特征:根据某一指标(信息增益,信息增益比或基尼 ...
Infi-chu: http://www.cnblogs.com/Infi-chu/ 一、简介 决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-else结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法 1.定义: 决策树是一种树形结构,其中每个内部节点表示一个 ...
决策树算法是一种通用的机器学习算法,既可以执行分类也可以执行回归任务,同时也是一种可以拟合复杂数据集的功能强大的算法; 一、可视化决策树模型 通过以下代码,我们使用iris数据集构建一个决策树模型,我们使用数据的后两个维度并设置决策树的最大深度为2,最后通过export ...