1.介绍 目标检测是指任意给定一张图像,判断图像中是否存在指定类别的目标,如果存在,则返回目标的位置和类别置信度 如下图检测人和自行车这两个目标,检测结果包括目标的位置、目标的类别和置信度 因为目标检测算法需要输出目标的类别和具体坐标,因此在数据标签上不仅要有目标的类别,还要有目标的坐标 ...
目标检测方法整理 经典方法包括: 基于region proposal的: R CNN Fast R CNN Faster R CNN R FCN 基于回归方法的: YOLO SSD region proposal方法 区域建议方法的主要思路是:找出可能的目标区域 提取目标区域特征 对目标区域分类 and 对目标Box回归 R CNN: .使用select search ss 方法得到目标的可能区域 ...
2017-10-16 12:34 0 2815 推荐指数:
1.介绍 目标检测是指任意给定一张图像,判断图像中是否存在指定类别的目标,如果存在,则返回目标的位置和类别置信度 如下图检测人和自行车这两个目标,检测结果包括目标的位置、目标的类别和置信度 因为目标检测算法需要输出目标的类别和具体坐标,因此在数据标签上不仅要有目标的类别,还要有目标的坐标 ...
前段时间看了YOLO的论文,打算用YOLO模型做一个迁移学习,看看能不能用于项目中去。但在实践过程中感觉到对于YOLO的一些细节和技巧还是没有很好的理解,现学习其他人的博客总结(所有参考连接都附于最后一部分“参考资料”),加入自己的理解,整理此学习笔记。 概念补充:mAP:mAP是目标 ...
基于深度学习的目标检测 普通的深度学习监督算法主要用来做分类,分类的目标是要识别出图中所示是一只猫。而在ILSVRC(ImageNet Large Scale Visual Recognition Challenge)竞赛以及实际的应用中,还包括目标定位和目标检测等任务。其中目标定位不仅仅要识别 ...
转:https://www.cnblogs.com/gujianhan/p/6035514.html 普通的深度学习监督算法主要是用来做分类,如图1(1)所示,分类的目标是要识别出图中所示是一只猫。而在ILSVRC(ImageNet Large Scale Visual Recognition ...
普通的深度学习监督算法主要是用来做分类,如图1(1)所示,分类的目标是要识别出图中所示是一只猫。而在ILSVRC(ImageNet Large Scale Visual Recognition Challenge)竞赛以及实际的应用中,还包括目标定位和目标检测等任务。其中目标定位是不仅仅要识别 ...
anchor在计算机视觉中有锚点或锚框,目标检测中常出现的anchor box是锚框,表示固定的参考框。 目标检测的任务: 在哪里有东西 难点: 目标的类别不确定、数量不确定、位置不确定、尺度不确定 传统算法的解决方式: 都要金字塔多尺度+遍历滑窗的方式,逐尺度逐位置判断 ...
2020-09-21 参考:https://blog.csdn.net/qq_32241189/article/details/80573087 一 目标识别分类及应用场景 目前可以将现有的基于深度学习的目标检测与识别算法大致分为以下三大类: ① 基于区域建议的目标检测 ...
一、环境搭建 当前:Windows10 + Anaconda3.6 1.1 创建PyTorch的虚拟环境 打开Anaconda中的Anaconda Prompt那个黑框框,输入: 之后输入 ...