Q:为什么会提及关于代价函数的理解? A:在 ML 中线性回归、逻辑回归等总都是绕不开代价函数。 理解代价函数:是什么?作用原理?为什么代价函数是这个? 1、代价函数是什么? 代价函数就是用于找到最优解的目的函数,这也是代价函数的作用。 损失函数(Loss Function ...
二次代价函数 quadratic cost : 其中,C表示代价函数,x表示样本,y表示实际值,a表示输出值,n表示样本的总数。为简单起见,使用一个样本为例进行说明,此时二次代价函数为: 假如我们使用梯度下降法 Gradient descent 来调整权值参数的大小,权值w和偏置b的梯度推导如下: 其中,z表示神经元的输入, 表示激活函数。w和b的梯度跟激活函数的梯度成正比,激活函数的梯度越大,w ...
2017-10-08 10:26 0 1558 推荐指数:
Q:为什么会提及关于代价函数的理解? A:在 ML 中线性回归、逻辑回归等总都是绕不开代价函数。 理解代价函数:是什么?作用原理?为什么代价函数是这个? 1、代价函数是什么? 代价函数就是用于找到最优解的目的函数,这也是代价函数的作用。 损失函数(Loss Function ...
代价函数有助于我们弄清楚如何把最有可能的函数与我们的数据相拟合。比如在模型训练中我们有训练集(x,y),x表示房屋的面积,y表示房屋的价格,我们要通过线性回归得到一个函数hθ(x)(被称为假设函数),以x作为自变量,y作为因变量,用函数来预测在给定的房屋面积下的价格。 参数θ0和θ1的变化 ...
未来是人工智能的时代! 提到深度学习,逻辑回归是最经典的一个例子,也是很多教材的入门算法(比如吴恩达的深度学习)。鉴于本人零基础学习人工智能的痛苦经历,所以用通俗的语言把逻辑回归讲清楚。深度学习本身核心知识是数学知识,涉及到线性代数、概率论,微积分等。体会到很多读者都是像我一样,已经把这些知识 ...
交叉熵代价函数与二次代价函数 交叉熵代价函数(Cross-entropy cost function)是用来衡量人工神经网络(ANN)的预测值与实际值的一种方式。与二次代价函数相比,它能更有效地促进ANN的训练。在介绍交叉熵代价函数之前,本文先简要介绍二次代价函数 ...
本章内容主要是介绍:单变量线性回归算法(Linear regression with one variable) 1. 线性回归算法(linear regression) 1.1 预测房屋价格 下图是俄勒冈州波特兰市的住房价格和面积大小的关系: 该问题属于监督学习中的回归问题 ...
注:代价函数(有的地方也叫损失函数,Loss Function)在机器学习中的每一种算法中都很重要,因为训练模型的过程就是优化代价函数的过程,代价函数对每个参数的偏导数就是梯度下降中提到的梯度,防止过拟合时添加的正则化项也是加在代价函数后面的。在学习相关算法的过程中,对代价函数的理解也在不断的加深 ...
代价函数(有的地方也叫损失函数,Loss Function)在机器学习中的每一种算法中都很重要,因为训练模型的过程就是优化代价函数的过程,代价函数对每个参数的偏导数就是梯度下降中提到的梯度,防止过拟合时添加的正则化项也是加在代价函数后面的。在学习相关算法的过程中,对代价函数的理解也在不断的加深 ...
本文是《Neural networks and deep learning》概览 中第三章的一部分,讲machine learning算法中用得非常多的交叉熵代价函数。 1.从方差代价函数说起 代价函数经经常使用方差代价函数(即採用均方误差MSE),比方对于一个神经元 ...