定理表述 如果函数f(x)满足: (1)在 闭区间[a,b]上 连续; (2)在 开区间(a,b)内 可导; 那么在开区间(a,b)内至少有一点 使等式 成立。 其他形式 记 ...
什么是拉格朗日中值定理 如果两地的距离是 公里,驾车走完这 公里耗时 小时,那么在某一时刻,你的速度必定会达到平均速度 公里 小时。 上述问题转换成数学语言:f x 是距离关于时间的函数,那么一定存在: f c 就是c时刻的瞬时速度。前提条件是f x 在 a, b 上连续,f x 在 a,b 内可导,且 a lt c lt b。这就是拉格朗日中值定理的通俗定义。 中值定理的几何意义如下图所示: 在 ...
2017-09-26 22:47 0 4796 推荐指数:
定理表述 如果函数f(x)满足: (1)在 闭区间[a,b]上 连续; (2)在 开区间(a,b)内 可导; 那么在开区间(a,b)内至少有一点 使等式 成立。 其他形式 记 ...
0x00 概述 微分中值定理是很重要的基础定理,很多定理都是以它为基础进行证明的。 0x01 罗尔中值定理 1.1 直觉 这是往返跑: 可以认为他从 点出发,经过一段时间又回到了 点,画成 (位移-时间)图就是 根据常识,因为要回到起点,中间 ...
...
微积分第一基本定理 如果F’(x) = f(x),那么: 如果将F用不定积分表示,F =∫f(x)dx,微积分第一基本定理可以看作为是两个不定积分赋予特定的值,再用符号连接起来,计算具体的数值。 这里引入一个新符号: 于是: 示例1 示例 ...
微积分第二基本定理 这里需要注意t与x的关系,它的意思是一个函数能够找到相应的积分方式去表达。如果F’=f,则: 下面是第二基本定理的证明。 证明需要采用画图法,如上图所示,曲线是y=f(x),两个阴影部分的面积分别是G(x)和ΔG(x),其中: 当Δx足够 ...
微分三大中值定理,罗尔中值定理,拉格朗日(Lagrange)中值定理、柯西(Cauchy)中值定理。 我对拉格朗日中值定理的构造函数的构造思路,进行了自己的猜测,网上没有找到类似的猜测和研究 下面的费马定理可以看做是三大中值定理的引理 费马定理(fermat):\(设f(x)在其极值点x_ ...
本文发表半小时后,我百度搜索,想看一下其他人的文章,结果发现本文,排名搜索结果第一名 截图在文章评论 英语单词: lagrange mean value theorem auxiliary func ...
problem \[\lim _{x \rightarrow 0} \frac{\mathrm{e}^{(1+x)^{\frac{1}{x}}}-(1+x)^{\frac{e}{x}}}{x^ ...