梯度下降法,是当今最流行的优化(optimization)算法,亦是至今最常用的优化神经网络的方法。本文旨在让你对不同的优化梯度下降法的算法有一个直观认识,以帮助你使用这些算法。我们首先会考察梯度下降法的各种变体,然后会简要地总结在训练(神经网络或是机器学习算法)的过程中可能遇到的挑战 ...
前言 本文仅对一些常见的优化方法进行直观介绍和简单的比较,各种优化方法的详细内容及公式只好去认真啃论文了,在此不赘述。 SGD 此处的SGD指mini batch gradient descent,关于batch gradient descent, stochastic gradient descent, 以及 mini batch gradient descent的具体区别就不细说了。现在的SG ...
2017-09-16 20:44 0 3285 推荐指数:
梯度下降法,是当今最流行的优化(optimization)算法,亦是至今最常用的优化神经网络的方法。本文旨在让你对不同的优化梯度下降法的算法有一个直观认识,以帮助你使用这些算法。我们首先会考察梯度下降法的各种变体,然后会简要地总结在训练(神经网络或是机器学习算法)的过程中可能遇到的挑战 ...
知乎上看到一个直观的解释... 链接:https://www.zhihu.com/question/43673341/answer/730181826 涉及到的基础 ...
转自:https://www.cnblogs.com/shixiangwan/p/7532858.html 梯度下降法,是当今最流行的优化(optimization)算法,亦是至今最常用的优化神经网络的方法。本文旨在让你对不同的优化梯度下降法的算法有一个直观认识,以帮助你使用这些算法。我们首先会 ...
梯度下降优化算法 梯度下降是常用的优化方式,具体的算法有: 梯度下降法 批梯度下降(Batch Gradient Descent, BGD) 随机梯度下降(Stochastic Gradient Decent, SGD) 小批量梯度下降(Mini-Batch ...
目录 一、牛顿法与拟牛顿法 1、牛顿法 1.1 原始牛顿法(假设f凸函数且两阶连续可导,Hessian矩阵非奇异) 算法1.1 牛顿法 1.2 阻尼牛顿法 ...
序言 对于y=f(wx+b),如何使用神经网络来进行求解,也就是给定x和y的值,如何让系统自动生成正确的权重值w和b呢? 一般情况下,有两种尝试方法: 1) 随机试:纯概率问题,几乎不可能实现。 2) 梯度下降法:先初始化w和b(可以随机 ...
/1609.04747 2. 中文翻译《梯度下降优化算法综述》 : http://blog.csdn.ne ...
【01-概述】 10个数据结构:数组、链表、栈、队列、散列表、二叉树、堆、跳表、图、Trie 树;10个算法:递归、排序、二分查找、搜索、哈希算法、贪心算法、分治算法、回溯算法、动态 规划、字符串匹配算法。 【复杂度分析】一、什么是复杂度分析?1.数据结构和算法解决是“如何让计算机更快时间 ...