6-1 三者都是典型的神经网络模型。 卷积神经网络是对前馈神经网络增加卷积层和池化层。 延时神经网络是对前馈神经网络增加延时器。 循环神经网络是对前馈神经网络增加自反馈的神经元。 延时神经网络和循环神经网络是给网络增加短期记忆能力的两种重要方法。 卷积神经网络和循环神经网络的区别在循环层 ...
文章导读: 卷积神经网络 卷积神经网络实践 深度神经网络在可以模拟更加复杂的情形,但是在上一章中,我们发现训练深度神经网络的时候会出现梯度消失的问题,从而导致模型训练失败。这一章,将会介绍可以被用在深度学习上的一些技术。 这章的主要内容是介绍一种应用最广泛的深度神经网络:卷积神经网络。我们将会了解到卷积,池化等概念,通过在之前的代码上利用这些技术进行优化达到了惊人的 . 的准确率。 除此之外,本章 ...
2017-09-18 16:00 0 2177 推荐指数:
6-1 三者都是典型的神经网络模型。 卷积神经网络是对前馈神经网络增加卷积层和池化层。 延时神经网络是对前馈神经网络增加延时器。 循环神经网络是对前馈神经网络增加自反馈的神经元。 延时神经网络和循环神经网络是给网络增加短期记忆能力的两种重要方法。 卷积神经网络和循环神经网络的区别在循环层 ...
第四章 数值计算(numerical calculation)和第五章 机器学习基础下去自己看。 一、深度前馈网络(Deep Feedfarward Network,DFN)概要: DFN:深度前馈网络,或前馈神经网络(FFN)/多层感知机(MLP) 目标:近似模拟某函数f y=f ...
参考:https://github.com/chenyuntc/pytorch-book/tree/v1.0/chapter6-实战指南 希望大家直接到上面的网址去查看代码,下面是本人的笔记 将上面地址的代码下载到本地后进行操作 1.安装依赖 在https ...
卷积神经网络(CNN)是一种具有局部连接、权重共享等特性的深层前馈神经网络。 卷积神经网络最早主要是用来处理图像信息。在用全连接前馈网络来处理图像时,会存在以下两个问题: (1)参数太多:随着隐藏层神经元数量的增多,参数的规模也会急剧增加。这会导致整个神经网络的训练效率非常低,也很容易出现 ...
文章导读: 1. 梯度消失问题 2. 是什么导致了梯度消失问题? 3. 复杂神经网络中的梯度不稳定问题 之前的章节,我们利用一个仅包含一层隐藏层的简单神经网络就在MNIST识别问题上获得了98%左右的准确率。我们于是本能会想到用更多的隐藏层,构建更复杂的神经网络将会为我们带来更好 ...
1.卷积操作实质: 输入图像(input volume),在深度方向上由很多slice组成,对于其中一个slice,可以对应很多神经元,神经元的weight表现为卷积核的形式,即一个方形的滤波器(filter)(如3X3),这些神经元各自分别对应图像中的某一个局部区域(local ...
这个人总结的太好了 , 忍不住想学习一下,放到这里。 为了尊重原创作者,说明一下是转载于:http://blog.csdn.net/MyArrow/article/details/51322433 学习总结 1. 简介 神经网络和深度学习是由Michael Nielsen所写 ...
深度学习引言 AI是最新的电力 大约在一百年前,我们社会的电气化改变了每个主要行业,从交通运输行业到制造业、医疗保健、通讯等方面,我认为如今我们见到了AI明显的令人惊讶的能量,带来了同样巨大的转变。 什么是神经网络? 神经网络的一部分神奇之处在于,当你实现它之后,你要做的只是输入x,就能 ...