目录 超参数调整 几个超参数范围选择的方法 超参数的实践:pandas VS canviar 正则化激活函数 softmax回归 一、超参数调整 重要性 从高到低:学习率$\alpha$——>$\beta$(0.9)、hidden units ...
前言 以下内容是个人学习之后的感悟,转载请注明出处 超参数调试 在深度学习中,超参数有很多,比如学习率 使用momentum或Adam优化算法的参数 , , 层数layers 不同层隐藏 单元数hidden units 学习率衰退 mini batch的大小等。其中一些超参数比其他参数重要,其优先级可以分为以下几级,如图,红色 框最优先,橙色次之,紫色再次之,最后没有框住的一般直接取经验值 当然你 ...
2017-09-14 16:54 0 5808 推荐指数:
目录 超参数调整 几个超参数范围选择的方法 超参数的实践:pandas VS canviar 正则化激活函数 softmax回归 一、超参数调整 重要性 从高到低:学习率$\alpha$——>$\beta$(0.9)、hidden units ...
在深度神经网络中,超参数的调整是一项必备技能,通过观察在训练过程中的监测指标如损失loss和准确率来判断当前模型处于什么样的训练状态,及时调整超参数以更科学地训练模型能够提高资源利用率。在本研究中使用了以下超参数,下面将分别介绍并总结了不同超参数的调整规则。 (1)学习率 学习 ...
1. 参数(parameters)/模型参数 由模型通过学习得到的变量,比如权重和偏置 2. 超参数(hyperparameters)/算法参数 根据经验进行设定,影响到权重和偏置的大小,比如迭代次数、隐藏层的层数、每层神经元的个数、学习速率等 ...
在深度神经网络中,超参数的调整是一项必备技能,通过观察在训练过程中的监测指标如损失loss和准确率来判断当前模型处于什么样的训练状态,及时调整超参数以更科学地训练模型能够提高资源利用率。在本研究中使用了以下超参数,下面将分别介绍并总结了不同超参数的调整规则。 (1)学习率 学习率 ...
要知道,与机器学习模型不同,深度学习模型里面充满了各种超参数。而且,并非所有参数变量都能对模型的学习过程产生同样的贡献。 考虑到这种额外的复杂性,在一个多维空间中找到这些参数变量的最佳配置并不是件容易的事情。 每一位科学家和研究人员,都希望在现有的资源条件下(计算、金钱和时间),找到最佳的模型 ...
更多笔记请火速前往 DeepLearning.ai学习笔记汇总 本周我们将学习如何配置训练/验证/测试集,如何分析方差&偏差,如何处理高偏差、高方差或者二者共存的问题,如何在神经网络中应用不同的正则化方法(如L2正则化、Dropout),梯度检测。 一、训练/验证/测试集 ...
ML工作流中最困难的部分之一是为模型找到最好的超参数。ML模型的性能与超参数直接相关。超参数调优的越好,得到的模型就越好。调优超参数可能是非常乏味和困难的,更像是一门艺术而不是科学。 超参数 超参数是在建立模型时用于控制算法行为的参数。这些参数不能从常规训练过程中获得。在对模型进行训练之前 ...