原文:FP-growth算法发现频繁项集(二)——发现频繁项集

上篇介绍了如何构建FP树,FP树的每条路径都满足最小支持度,我们需要做的是在一条路径上寻找到更多的关联关系。 抽取条件模式基 首先从FP树头指针表中的单个频繁元素项开始。对于每一个元素项,获得其对应的条件模式基 conditional pattern base ,单个元素项的条件模式基也就是元素项的关键字。条件模式基是以所查找元素项为结尾的路径集合。每一条路径其实都是一条前辍路径 perfix ...

2017-09-08 08:44 2 9995 推荐指数:

查看详情

FP-growth高效频繁发现

FP-growth 算法优缺点: 优点:一般快于Apriori 缺点:实现比较困难,在某些数据上性能下降 适用数据类型:标称型数据 算法思想: FP-growth算法是用来解决频繁发现问题的,这个问题再前面 ...

Wed Dec 10 07:55:00 CST 2014 0 2595
FP-growth算法发现频繁(一)——构建FP

  常见的挖掘频繁算法有两类,一类是Apriori算法,另一类是FP-growth。Apriori通过不断的构造候选集、筛选候选集挖掘出频繁,需要多次扫描原始数据,当原始数据较大时,磁盘I/O次数太多,效率比较低下。FPGrowth不同于Apriori的“试探”策略,算法只需扫描原始数据 ...

Wed Sep 06 06:39:00 CST 2017 5 18241
机器学习实战笔记-使用FP-growth算法来高效发现频繁

上一章我们讨论了从数据集中获取有趣信息的方法,最常用的两种分别是频繁与关联规则。第11章中介绍了发现频繁与关键规则的算法,本章将继续关注发现频繁这一任务。我们会深人探索该任务的解决方法,并应用FP-growth算法进行处理,该算法能够更有效地挖掘数据。这种算法虽然能更为高效地发现 ...

Thu Nov 30 09:08:00 CST 2017 0 2592
频繁挖掘之apriori和fp-growth

Apriori和fp-growth频繁(frequent itemset mining)挖掘中的两个经典算法,虽然都是十几年前的,但是理解这两个算法对数据挖掘和学习算法都有很大好处。在理解这两个算法之前,应该先了解频繁挖掘是做什么用的。 频繁挖掘是关联规则挖掘中的首要的子任务 ...

Wed Jul 18 00:21:00 CST 2018 0 1372
发现频繁的方法 Apriori算法

我们是通过算法来找到数据之间的关联规则(两个物品之间可能存在很强的相关关系)和频繁(经常出现在一起的物品的集合)。 我们是通过支持度和置信度来定义关联规则和频繁的 一个支持度是指在所有数据集中出现这个的概率,可能只包含一个选项,也有可能是多个选项的组合。 置信 ...

Sun Feb 24 07:49:00 CST 2019 0 1617
关联分析中寻找频繁FP-growth方法

关联分析是数据挖掘中常用的分析方法。一个常见的需求比如说寻找出经常一起出现的项目集合。 引入一个定义,的支持度(support),是指所有包含这个的集合在所有数据集中出现的比例。 规定一个最小支持度,那么不小于这个最小支持度的称为频繁(frequent item set ...

Sat Aug 18 02:03:00 CST 2018 2 1427
频繁算法

基础知识: 用户 薯片(A) 可乐(B) 铅笔(C) 羽毛球(D) 洗衣液(E) 1 √ ...

Wed Apr 03 00:24:00 CST 2019 0 1319
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM