来源:https://www.numpy.org.cn/deep/basics/fit_a_line.html 线性回归 让我们从经典的线性回归(Linear Regression [1])模型开始这份教程。在这一章里,你将使用真实的数据集建立起一个房价预测模型,并且了解到机器学习中的若干重要 ...
lt a 在本节中将通过一个预测房屋价格的实例来讲解利用线性回归预测房屋价格,以及在tensorflow中如何实现 Tensorflow 线性回归预测房价实例 . . 准备工作 . . 归一化数据 . . 用随机的值填充a,b并计算误差,误差采用上文所使用SSE 和方差 . . 计算误差梯度 . . 调整参数直到SSE参数最小 . . 概念 . . . 简单线性回归 . . . 梯度下降 梯度 ...
2017-09-07 11:48 4 9643 推荐指数:
来源:https://www.numpy.org.cn/deep/basics/fit_a_line.html 线性回归 让我们从经典的线性回归(Linear Regression [1])模型开始这份教程。在这一章里,你将使用真实的数据集建立起一个房价预测模型,并且了解到机器学习中的若干重要 ...
# 训练数据 linreg = linear_model.LinearRegression() linreg.fit(x_train, y_train) # 得出预测值 y_pred ...
本文采用正规方程、梯度下降、带有正则化的岭回归三种方法对BOSTON房价数据集进行分析预测,比较三种方法之间的差异 过拟合:一个假设在训练数据上能够获得比其他假设更好的拟合, 但是在训练数据外的数据集上却不能很好地拟合数据,此时认为这个假设出现了过拟合的现象。(模型过于复杂 ...
一、根据波士顿房价信息进行预测,多元线性回归+特征数据归一化 二、根据波士顿房价信息进行预测,多元线性回归+特征数据归一化+可视化 三、根据波士顿房价信息进行预测,多元线性回归+特征数据归一化+可视化+TensorBoard可视化 ...
关于线性回归的介绍可以看这里:线性回归介绍 下文主要介绍通过线性回归解决Kaggle中的HousePrices问题,使用的是PyTorch。 下文会给出使用线性回归创建的最终模型,以及超参数等内容,但是整个模型的搭建以及试错的过程由于内容太长,感兴趣 的可以去作者的GitHub下载相关 ...
> 以下内容是我在学习https://blog.csdn.net/mingxiaod/article/details/85938251 教程时遇到不懂的问题自己查询并理解的笔记,由于sklea ...
一、线性回归(Linear Regression)介绍 线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。其表达形式为y = w'x +e,e为误差服从均值为0的正态分布。线性回归是经济学的主要实证工具。例如,它是用来预测消费支出 ...