目录 机器学习基础 什么是机器学习 机器学习 应用场景 海量数据 机器学习的重要性 机器学习的基本术语 监督学习和非监督学习 监督学习:supervised learning 非监督学习 ...
第 章 机器学习基础 机器学习 概述 机器学习就是把无序的数据转换成有用的信息。 获取海量的数据 从海量数据中获取有用的信息 我们会利用计算机来彰显数据背后的真实含义,这才是机器学习的意义。 机器学习 场景 机器学习已应用于多个领域,远远超出大多数人的想象,横跨:计算机科学 工程技术和统计学等多个学科。 搜索引擎: 根据你的搜索点击,优化你下次的搜索结果。 垃圾邮件: 会自动的过滤垃圾广告邮件到垃 ...
2017-09-01 11:59 5 1222 推荐指数:
目录 机器学习基础 什么是机器学习 机器学习 应用场景 海量数据 机器学习的重要性 机器学习的基本术语 监督学习和非监督学习 监督学习:supervised learning 非监督学习 ...
第5章 Logistic回归 Logistic 回归 概述 Logistic 回归虽然名字叫回归,但是它是用来做分类的。其主要思想是: 根据现有数据对分类边界线建立回归公式,以此进行分类。 须知概念 Sigmoid 函数 回归 概念 假设现在有一些数据点,我们用一条直线对这些点进行 ...
系列文章:《机器学习实战》学习笔记 这是《机器学习实战》的第一章,本章简要介绍了下什么是机器学习、机器学习的主要任务和本书中将要用到的Python语言。现在机器学习(Machine learning)与人工智能(Artificial intelligence)这么火,介绍机器学习的文章网上 ...
一. KNN原理: 1. 有监督的学习 根据已知事例及其类标,对新的实例按照离他最近的K的邻居中出现频率最高的类别进行分类。伪代码如下: 1)计算已知类别数据集中的点与当前点之间的距离 2)按照距离从小到大排序 3)选取与当前点距离最小的k个点 4)确定这k个点所在类别 ...
一,引言 前面讲到的基本都是分类问题,分类问题的目标变量是标称型数据,或者离散型数据。而回归的目标变量为连续型,也即是回归对连续型变量做出预测,最直接的办法是依据输入写出一个目标值的计算公式 ...
python机器学习实战(二) 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7159775.html 前言 这篇notebook是关于机器学习监督学习中的决策树算法,内容包括决策树算法的构造过程,使用 ...
转自:https://www.cnblogs.com/zy230530/p/6942458.html 一,引言 前面讲到的基本都是分类问题,分类问题的目标变量是标称型数据,或者离散型数据。 ...
一,引言 降维是对数据高维度特征的一种预处理方法。降维是将高维度的数据保留下最重要的一些特征,去除噪声和不重要的特征,从而实现提升数据处理速度的目的。在实际的生产和应用中,降维在一定的信息损失范 ...