一、深层神经网络 深层神经网络的符号与浅层的不同,记录如下: 用\(L\)表示层数,该神经网络\(L=4\) \(n^{[l]}\)表示第\(l\)层的神经元的数量,例如\(n^{[1]}=n^{[2]}=5,n^{[3]}=3,n^{[4]}=1\) \(a^{[l ...
介绍 DeepLearning课程总共五大章节,该系列笔记将按照课程安排进行记录。 另外第一章的前两周的课程在之前的Andrew Ng机器学习课程笔记 博客园 amp Andrew Ng机器学习课程笔记 CSDN 系列笔记中都有提到,所以这里不再赘述。 神经网络概要 注意:这一系列的课程中用中括号表示层数,例如 a 表示第二层 隐藏层 的数据。 神经网络表示 这个图的内容有点多,跟着下面的步骤来 ...
2017-08-30 16:09 0 6691 推荐指数:
一、深层神经网络 深层神经网络的符号与浅层的不同,记录如下: 用\(L\)表示层数,该神经网络\(L=4\) \(n^{[l]}\)表示第\(l\)层的神经元的数量,例如\(n^{[1]}=n^{[2]}=5,n^{[3]}=3,n^{[4]}=1\) \(a^{[l ...
一、目标定位 这一小节视频主要介绍了我们在实现目标定位时标签该如何定义。 上图左下角给出了损失函数的计算公式(这里使用的是平方差) 如图示,加入我们需要定位出图像中是否有pedes ...
以下为在Coursera上吴恩达老师的DeepLearning.ai课程项目中,第一部分《神经网络和深度学习》第二周课程部分关键点的笔记。笔记并不包含全部小视频课程的记录,如需学习笔记中舍弃的内容请至 Coursera 或者 网易云课堂。同时在阅读以下笔记之前,强烈建议先学习吴恩达老师的视频课程 ...
一、为什么要进行实例探究? 通过他人的实例可以更好的理解如何构建卷积神经网络,本周课程主要会介绍如下网络 LeNet-5 AlexNet VGG ResNet (有152层) Inception 二、经典网络 1.LeNet-5 该网络主要针对灰度图像训练 ...
1 神经网络概览( Neural Networks Overview ) 先来快速过一遍如何实现神经网络。 首先需要输入特征x,参数w和b,计算出z,然后用激活函数计算出a,在神经网络中我们要做多次这样的计算,反复计算z和a,然后用损失函数计算最后的a和y的差异。 可以把很多sigmoid ...
一、计算机视觉 如图示,之前课程中介绍的都是64* 64 *3的图像,而一旦图像质量增加,例如变成1000 * 1000 * 3的时候那么此时的神经网络的计算量会巨大,显然这不现实。所以需要引入其他的方法来解决这个问题。 二、边缘检测示例 边缘检测可以是垂直边缘检测,也可以是水平边缘检测 ...
一、调试处理 week2中提到有如下的超参数: α hidden units mini-batch size β layers learning rate decay \(β_1,β_2,ε\) 颜色表示重要性,以及调试过程中可能会需要修改的程度 ...
作者:szx_spark 1. 经典网络 LeNet-5 AlexNet VGG Ng介绍了上述三个在计算机视觉中的经典网络。网络深度逐渐增加,训练的参数数量也骤增。AlexNet大约6000万参数,VGG大约上亿参数。 从中我们可以学习 ...