论文:《Focal Loss for Dense Object Detection》 Focal Loss 是何恺明设计的为了解决one-stage目标检测在训练阶段前景类和背景类极度不均衡(如1:1000)的场景的损失函数。它是由二分类交叉熵改造而来的。 标准交叉熵 其中,p是模型预测 ...
论文:Focal Loss for Dense Object Detection论文链接:https: arxiv.org abs . 一. 提出背景 object detection的算法主要可以分为两大类:two stage detector和one stage detector。前者是指类似Faster RCNN,RFCN这样需要region proposal的检测算法,这类算法可以达到很高 ...
2017-08-29 11:20 1 4461 推荐指数:
论文:《Focal Loss for Dense Object Detection》 Focal Loss 是何恺明设计的为了解决one-stage目标检测在训练阶段前景类和背景类极度不均衡(如1:1000)的场景的损失函数。它是由二分类交叉熵改造而来的。 标准交叉熵 其中,p是模型预测 ...
首先回顾一下交叉熵: Softmax层的作用是把输出变成概率分布,假设神经网络的原始输出为y1,y2,….,yn,那么经过Softmax回归处理之后的输出为: 交叉熵刻画的是实际输出(概率)与 ...
Focal Loss 与 GHM Focal Loss Focal Loss 的提出主要是为了解决难易样本数量不平衡(注意:这有别于正负样本数量不均衡问题)问题。下面以目标检测应用场景来说明。 一些 one-stage 的目标检测器通常会产生很多数量的 anchor box ...
本质上讲,Focal Loss 就是一个解决分类问题中类别不平衡、分类难度差异的一个 loss,总之这个工作一片好评就是了。 看到这个 loss,开始感觉很神奇,感觉大有用途。因为在 NLP 中,也存在大量的类别不平衡的任务。最经典的就是序列标注任务中类别是严重不平衡的,比如在命名实体识别中 ...
公式推导:https://github.com/zimenglan-sysu-512/paper-note/blob/master/focal_loss.pdf 使用的代码:https://github.com/zimenglan-sysu-512/Focal-Loss ...
1. 总述 Focal loss主要是为了解决one-stage目标检测中正负样本比例严重失衡的问题。该损失函数降低了大量简单负样本在训练中所占的权重,也可理解为一种困难样本挖掘。 2. 损失函数形式 Focal loss是在交叉熵损失函数基础上进行的修改,首先回顾二分类交叉上损失 ...
Focal Loss for Dense Object Detection-RetinaNet YOLO和SSD可以算one-stage算法里的佼佼者,加上R-CNN系列算法,这几种算法可以说是目标检测领域非常经典的算法了。这几种算法在提出之后经过数次改进,都得到了很高的精确度 ...