原文:k-means算法的优缺点以及改进

大家接触的第一个聚类方法,十有八九都是K means聚类啦。该算法十分容易理解,也很容易实现。其实几乎所有的机器学习和数据挖掘算法都有其优点和缺点。那么K means的缺点是什么呢 总结为下: 对于离群点和孤立点敏感 k值选择 初始聚类中心的选择 只能发现球状簇。对于这 点呢的原因,读者可以自行思考下,不难理解。针对上述四个缺点,依次介绍改进措施。 改进 首先针对 ,对于离群点和孤立点敏感,如何解 ...

2017-08-26 20:10 0 6998 推荐指数:

查看详情

K-means算法优缺点

K-means算法优缺点 优点:原理简单,实现容易 缺点: 收敛较慢 算法时间复杂度比较高 \(O(nkt)\) 不能发现非凸形状的簇 需要事先确定超参数K 对噪声和离群点敏感 结果不一定是全局最优,只能保证局部最优 ...

Fri Oct 26 20:17:00 CST 2018 0 5174
K-means聚类算法的三种改进(K-means++,ISODATA,Kernel K-means)介绍与对比

一、概述 在本篇文章中将对四种聚类算法(K-means,K-means++,ISODATA和Kernel K-means)进行详细介绍,并利用数据集来真实地反映这四种算法之间的区别。 首先需要明确的是上述四种算法都属于"硬聚类”算法,即数据集中每一个样本都是被100 ...

Wed Jan 11 11:00:00 CST 2017 12 70959
K-Means ++ 算法

K-Means ++ 算法 k-means++算法选择初始seeds的基本思想就是:初始的聚类中 ...

Sun Jun 26 02:04:00 CST 2016 0 4297
K-means 算法

本学习笔记参考自吴恩达老师机器学习公开课 聚类算法是一种无监督学习算法k均值算法是其中应用最为广泛的一种,算法接受一个未标记的数据集,然后将数据聚类成不同的组。K均值是一个迭代算法,假设我们想要将数据聚类成K个组,其方法为: 随机选择K个随机的点(称为聚类中心 ...

Wed Dec 06 02:48:00 CST 2017 1 10820
K-Means算法

聚类与分类的区别 分类 类别是已知的,通过对已知分类的数据进行训练和学习,找到这些不同类的特征,再对未分类的数据进行分类。属于监督学习。 聚类 事先不知道数据会分为几类,通过聚类分析将数据聚合 ...

Wed Oct 10 00:09:00 CST 2018 0 4554
K-Means 聚类算法

K-Means 概念定义: K-Means 是一种基于距离的排他的聚类划分方法。 上面的 K-Means 描述中包含了几个概念: 聚类(Clustering):K-Means 是一种聚类分析(Cluster Analysis)方法。聚类就是将数据对象分组成为多个类或者簇 ...

Tue Feb 10 07:06:00 CST 2015 3 17123
K-means聚类算法

1.原文:http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006910.html K-means也是聚类算法中最简单的一种了,但是里面包含的思想却是不一般。最早我使用并实现这个算法是在学习韩爷爷那本数据挖掘的书中,那本书比较注重应用 ...

Sun Nov 09 00:57:00 CST 2014 0 11297
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM