原图片读入后如下所示,会有很多噪音点 这时就要用到滤波处理来处理这些噪音点,有以下几种方式: 1、均值滤波 对于一个像素点,可以在它周围画一个卷积盒子,用盒子中的均值来代替这个像素点,计算公式为(121+75+...+235)/9 也就相当于一个3×3的卷积矩阵 ...
Author:胡健 图像平滑 smooth 也称为 模糊处理 ,最常见的smooth的使用方法是降低图像上的噪声或者失真。 图像滤波 什么是图像滤波呢 就是在尽量保留图像细节特征的条件下对目标图像的噪声进行抑制。 图像滤波的目的就是消除图像的噪声和抽出对象的特征。图像滤波的要求是:不能损坏图像的重要特征信息 如轮廓和边缘 。还须要使得滤波处理后的图像更加清晰。 对于平滑滤波来说,他的目的有两类: ...
2017-07-28 11:24 0 3154 推荐指数:
原图片读入后如下所示,会有很多噪音点 这时就要用到滤波处理来处理这些噪音点,有以下几种方式: 1、均值滤波 对于一个像素点,可以在它周围画一个卷积盒子,用盒子中的均值来代替这个像素点,计算公式为(121+75+...+235)/9 也就相当于一个3×3的卷积矩阵 ...
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python 图像处理 OpenCV (3):图像属性、图像感兴趣 ROI 区域及通道处理 ...
主要讲解Python调用OpenCV实现图像平滑,包括四个算法:均值滤波、方框滤波、高斯滤波和中值滤波. 给图像增加噪声: 效果如下: 均值滤波: 均值滤波是指任意一点的像素值,都是周围N*M个像素值的均值, result = cv2.blur(图像, 核大小 ...
基于ArcGIS的栅格图像平滑处理 栅格数据获取的途径多种多样,造成了栅格数据质量的很大差异,一些质量较差的栅格数据存在大量“噪音”象元,即在表达同类型的地理要素时,出现个别像元值与周边像元不一致的情况,数据中噪音栅格象元的存在为数据的使用和分析带来了极大的不便,因此经常需要对栅格进行平滑 ...
1、空间滤波基础概念 1、空间滤波基础 空间滤波一词中滤波取自数字信号处理,指接受或拒绝一定的频率成分,但是空间滤波学习内容实际上和通过傅里叶变换实现的频域的滤波是等效的,故而也称为滤波。空间滤波主要直接基于领域(空间域)对图像中的像素执行计算,用滤波器(也成为空间掩膜、核、模板和窗口)直接 ...
空域滤波技术根据功能主要分为平滑滤波与锐化滤波。 平滑滤波能减弱或消除图像中的高频率分量而不影响低频分量,高频分量对应图像中的区域边缘等灰度值具有较大变化的部分,平滑滤波可将这些分量滤去减少局部灰度起伏,使图像变得比较平滑。也可用于消除噪声,或在提取较大目标前去除太小的细节或将目标的小间 ...
高斯滤波器是根据高斯函数来选择权值的线性平滑滤波器,对随机分布和服从正态分布的噪声有很好地滤除效果。本文从opencv内置的高斯滤波函数入手,深入介绍高斯滤波器的原理与实现。 一、高斯分布函数与高斯卷积核 高斯分布函数指的就是概率论中的正态分布的概率密度函数,均值μ=0时 ...
一、何为图像噪声?噪声是妨碍人的感觉器官所接受信源信息理解的因素,是不可预测只能用概率统计方法认识的随机误差。 举个例子: 从这个图中,我们可以观察到噪声的特点:1>位置随机 2>大小不规则。我们将这种噪声称为随机噪声(random noise),这是一种 ...