概率函数 vs 似然函数 : p(x|θ) (概率函数是θ,已知,求x的概率。似然函数是x已知,求θ) 分布是p(x|θ)的总体样本中抽取到这100个样本的概率,也就是样本集X中各个样本的联合概率 最大似然估计为: 为了方便计算,对联合概率取对数 求最大似然函数估计值 ...
.什么是似然函数 一句话概括:似然函数是参数的函数。 公式:解释:参数 theta 在给定输出为x的情况下的似然函数等于,在给定参数为 theta 的情况下,取x的概率。注意:此处的竖杠并不表示条件件概率,仅仅是一种取该值的含义。 我的理解:在统计学中,随机变量会服从某个分布,此分布带有参数。参数不同,随机变量对应同一个值的概率也不同。一般来说我们给定参数,然后来计算概率。但是似然函数是先给定事 ...
2017-06-25 21:01 0 7097 推荐指数:
概率函数 vs 似然函数 : p(x|θ) (概率函数是θ,已知,求x的概率。似然函数是x已知,求θ) 分布是p(x|θ)的总体样本中抽取到这100个样本的概率,也就是样本集X中各个样本的联合概率 最大似然估计为: 为了方便计算,对联合概率取对数 求最大似然函数估计值 ...
最大似然估计 概率 定义 某个事件发生的可能性,通常知道分布规律以及具体参数的情况下,就可以计算出某个事件发生的概率 似然 定义 给定已知数据来拟合模型,或者说给定某一结果,求某一参数值的可能性 似然函数与概率密度函数 设总体分布 \(f(X;\theta)\),\(x1 ...
知乎上关于似然的一个问题:https://www.zhihu.com/question/54082000 概率(密度)表达给定下样本随机向量的可能性,而似然表达了给定样本下参数(相对于另外的参数)为真实值的可能性。 http://www.cnblogs.com/zhsuiy/p ...
一直对贝叶斯里面的似然函数(likelihood function),先验概率(prior),后验概率(posterior)理解得不是很好,今天仿佛有了新的理解,记录一下。 看论文的时候读到这样一句话: 原来只关注公式,所以一带而过。再重新看这个公式前的描述,细思极恐 ...
首先要知道什么是似然函数,根据百度百科的介绍: 设总体X服从分布P(x;θ)(当X是连续型随机变量时为概率密度,当X为离散型随机变量时为概率分布),θ为待估参数,X1,X2,…Xn是来自于总体X的样本,x1,x2…xn为样本X1,X2,…Xn的一个观察值,则样本的联合分布(当X是连续型随机变量时 ...
%B6%E4%BC%B0%E8%AE%A1 似然函数(Likelihood functio ...
似然函数 似然函数与概率非常类似但又有根本的区别,概率为在某种条件(参数)下预测某事件发生的可能性;而似然函数与之相反为已知该事件的情况下推测出该事件发生时的条件(参数);所以似然估计也称为参数估计,为参数估计中的一种算法; 下面先求抛硬币的似然函数,然后再使用似然函数算出线性回归的参数 ...