稀疏自编码器的学习结构: 稀疏自编码器Ⅰ: 神经网络 反向传导算法 梯度检验与高级优化 稀疏自编码器Ⅱ: 自编码算法与稀疏性 可视化自编码器训练结果 Exercise: Sparse Autoencoder 自编码算法与稀疏性 已经讨论了神经网络在有 ...
UFLDL深度学习笔记 一 基本知识与稀疏自编码 前言 近来正在系统研究一下深度学习,作为新入门者,为了更好地理解 交流,准备把学习过程总结记录下来。最开始的规划是先学习理论推导 然后学习一两种开源框架 第三是进阶调优 加速技巧。越往后越要带着工作中的实际问题去做,而不能是空中楼阁式沉迷在理论资料的旧数据中。深度学习领域大牛吴恩达 Andrew Ng 老师的UFLDL教程 Unsupervised ...
2017-06-24 12:48 0 3718 推荐指数:
稀疏自编码器的学习结构: 稀疏自编码器Ⅰ: 神经网络 反向传导算法 梯度检验与高级优化 稀疏自编码器Ⅱ: 自编码算法与稀疏性 可视化自编码器训练结果 Exercise: Sparse Autoencoder 自编码算法与稀疏性 已经讨论了神经网络在有 ...
稀疏自编码器的学习结构: 稀疏自编码器Ⅰ: 神经网络 反向传导算法 梯度检验与高级优化 稀疏自编码器Ⅱ: 自编码算法与稀疏性 可视化自编码器训练结果 Exercise: Sparse Autoencoder 稀疏自编码器Ⅰ这部分先简单讲述神经网络的部分,它和稀疏 ...
UFLDL即(unsupervised feature learning & deep learning)。这是斯坦福网站上的一篇经典教程。顾名思义,你将在这篇这篇文章中学习到无监督特征学习和深度学习的主要观点。 UFLDL全文出处在这:http://ufldl ...
今天来做UFLDL的第二个实验,向量化。我们都知道,在matlab里面基本上如果使用for循环,程序是会慢的一逼的(可以说基本就运行不下去)所以在这呢,我们需要对程序进行向量化的处理,所谓向量化就是将matlab里面所有的for循环用矩阵运算的方法实现,在这里呢,因为之前的实验我已经是按照向量化 ...
本笔记主要记录学习《深度学习》的总结体会。如有理解不到位的地方,欢迎大家指出,我会努力改正。 在学习《深度学习》时,我主要是通过Andrew Ng教授在http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial上提供 ...
部分内容来自:http://ufldl.stanford.edu/wiki/index.php/%E6%A0%88%E5%BC%8F%E8%87%AA%E7%BC%96%E7%A0%81%E7%AE%97%E6%B3%95 栈式自编码神经网络是一个由多层稀疏自编码器组成的神经网络,其前一层自编码 ...
在深度学习中,前向传播与反向传播是很重要的概念,因此我们需要对前向传播与反向传播有更加深刻的理解,假设这里有一个三层的神经网络 在这里,上面一排表示的是前向传播,后面一排表示的是反向传播,在前向传播的情况每一层将通过一层激活函数去线性化,并且在前向传播的过程中会缓存z[l],最终输出y ...
李宏毅深度学习笔记 https://datawhalechina.github.io/leeml-notes 李宏毅深度学习视频 https://www.bilibili.com/video/BV1JE411g7XF 背景 梯度下降 假设有很多参数\(\theta\) 选择一组初始值 ...