本讲内容 1. Bias/Variance trade-off (偏差-方差权衡) 2. Empirical risk minimization(ERM) (经验风险最小化) 3. Union Bound/ Hoeffding inequality (联合界/霍夫丁不等式) 4. ...
本讲内容 . Generative learning algorithms 生成学习算法 . GDA 高斯判别分析 . Naive Bayes 朴素贝叶斯 . Laplace Smoothing 拉普拉斯平滑 .生成学习算法与判别学习算法 判别学习算法:直接学习或者学习一个假设直接输出 或者 。logistic回归是判别学习算法的一个例子。 生成学习算法:对建模,即在给定所属的类别的情况下,对特征 ...
2017-06-03 15:02 0 2411 推荐指数:
本讲内容 1. Bias/Variance trade-off (偏差-方差权衡) 2. Empirical risk minimization(ERM) (经验风险最小化) 3. Union Bound/ Hoeffding inequality (联合界/霍夫丁不等式) 4. ...
我们将讨论逻辑回归。 逻辑回归是一种将数据分类为离散结果的方法。 例如,我们可以使用逻辑回归将电子邮件分类为垃圾邮件或非垃圾邮件。 在本模块中,我们介绍分类的概念,逻辑回归的损失函数(cost functon),以及逻辑回归对多分类的应用。 我们还涉及正规化。 机器学习模型需要很好地推广到模型 ...
高斯判别分析(GDA)简介 首先,高斯判别分析的作用也是用于分类。对于两类样本,其服从伯努利分布,而对每个类中的样本,假定都服从高斯分布,则有: \( y\;\sim\;Bernouli( ...
学习Coursera上的斯坦福机器学习课程的时候,需要向其服务器提交编程作业,我遇到如下问题: ‘Submission failed: unexpected error: urlread: Peer certificate cannot be authenticated with given ...
斯坦福大学机器学习 课程信息 机器学习是一门研究在非特定编程条件下让计算机采取行动的学科。最近二十年,机器学习为我们带来了自动驾驶汽车、实用的语音识别、高效的网络搜索,让我们对人类基因的解读能力大大提高。当今机器学习技术已经非常普遍 ...
在有监督学习里面有几个逻辑上的重要组成部件[3],初略地分可以分为:模型,参数 和 目标函数。(此部分转自 XGBoost 与 Boosted Tree) 一、模型和参数 模型指给定输入xi如何去预测 输出 yi。我们比较常见的模型如线性模型(包括线性回归和logistic ...
(Notes and Codes of Machine Learning by Andrew Ng from Stanford University) 说明:为了保证连贯性,文章按照专题而不是原本的课程进度来组织。 零、什么是机器学习? 机器学习就是:根据已有的训练集D,采用学习算法A,得到 ...
应该是去年的这个时候,我开始接触机器学习的相关知识,当时的入门书籍是《数据挖掘导论》。囫囵吞枣般看完了各个知名的分类器:决策树、朴素贝叶斯、SVM、神经网络、随机森林等等;另外较为认真地复习了统计学,学习了线性回归,也得以通过orange、spss、R做一些分类预测工作。可是对外说自己是搞机器学习 ...