主要采用递归的思想,假设三个塔A,B,C。根据汉诺塔规则,需要将A转移至C,借助中间量C。对于一个n层汉诺塔,只需将n-1层移至B,将第n层移至C,此时再以A为中间量将当前B中的n-1层中的n-2层移至A,最后一层移至C,如此循环,即可将所有盘移至C,并按顺序放置。 ...
主要采用递归的思想,假设三个塔A,B,C。根据汉诺塔规则,需要将A转移至C,借助中间量C。对于一个n层汉诺塔,只需将n-1层移至B,将第n层移至C,此时再以A为中间量将当前B中的n-1层中的n-2层移至A,最后一层移至C,如此循环,即可将所有盘移至C,并按顺序放置。 ...
c++解决汉诺塔问题 题目描述 约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下、由小到大顺序串着由64个圆盘构成的塔。目的是将最左边杆上的盘全部移到中间的杆上,条件是一次只能移动一个盘,且不允许大盘放在小盘的上面。 这是一个著名的问题,几乎所有的教材 ...
汉诺塔问题是指:一块板上有三根针 A、B、C。A 针上套有 64 个大小不等的圆盘,按照大的在下、小的在上的顺序排列,要把这 64 个圆盘从 A 针移动到 C 针上,每次只能移动一个圆盘,移动过程可以借助 B 针。 但在任何时候,任何针上的圆盘都必须保持大盘在下,小盘在上。从键盘输入需移动 ...
汉诺塔: 有三根杆子A,B,C。A杆上有N个(N>1)穿孔圆环,盘的尺寸由下到上依次变小。要求按下列规则将所有圆盘移至C杆: 每次只能移动一个圆盘; 大盘不能叠在小盘上面。 提示:可将圆盘临时置于B杆,也可将从A杆移出的圆盘重新移回A杆,但都必须遵循上述两条规则。 问 ...
一、由来: 汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动 ...
汉诺塔问题 汉诺塔问题是一个经典的问题。汉诺塔(Hanoi Tower),又称河内塔,源于印度一个古老传说。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,任何时候,在小圆 ...
【题目描述】 约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下、由小到大顺序串着由64个圆盘构成的塔。目的是将最左边杆上的盘全部移到中间的杆上,条件是一次只能移动一个盘,且不允许大盘放在小盘的上面。 这是一个著名的问题,几乎所有的教材上都有这个问题 ...
关于C++,hanoi塔的递归问题一直是个经典问题,我们学习数据结构的时候也会时常用到, 因为它的时间复杂度和空间复杂度都很高,我们在实际的应用中不推荐使用这种算法,移动n个盘子, 需要2的n次幂减一步,例如:5个盘子,31步;10个盘子,1023步。 下面,是我整理的有关C++递归 ...