一、由来:
汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。
二、运算方法:
H⑴ = 1
H(n) = 2*H(n-1)+1 (n>1)
三、用Python实现汉诺塔的搬运过程:

运行结果:

四、用turtle库画汉诺塔:
import turtle
class Stack:
def __init__(self):
self.items = []
def isEmpty(self):
return len(self.items) == 0
def push(self, item):
self.items.append(item)
def pop(self):
return self.items.pop()
def peek(self):
if not self.isEmpty():
return self.items[len(self.items) - 1]
def size(self):
return len(self.items)
def drawpole_3():#画出汉诺塔的底座
t = turtle.Turtle()
t.hideturtle()
def drawpole_1(k):
t.up()
t.pensize(5)
t.speed(75)
t.goto(200*(k-1), 100)
t.down()
t.color('blue')
t.goto(200*(k-1), -100)
t.goto(200*(k-1)-20, -100)
t.goto(200*(k-1)+20, -100)
drawpole_1(0)#画出汉诺塔的A
drawpole_1(1)#画出汉诺塔的B
drawpole_1(2)#画出汉诺塔的C
def creat_plates(n):#制造n个盘
plates=[turtle.Turtle() for i in range(n)]
for i in range(n):
plates[i].up()
plates[i].color('green')
plates[i].hideturtle()
plates[i].shape("square")
plates[i].shapesize(1,9-i)
plates[i].goto(-200,-90+20*i)
plates[i].showturtle()
return plates
def pole_stack():#制造底的栈
poles=[Stack() for i in range(3)]
return poles
def moveDisk(plates,poles,fp,tp):
mov=poles[fp].peek()
plates[mov].goto((fp-1)*200,150)
plates[mov].goto((tp-1)*200,150)
l=poles[tp].size()
plates[mov].goto((tp-1)*200,-90+20*l)
def moveTower(plates,poles,height,fromPole, toPole, withPole):
if height >= 1:
moveTower(plates,poles,height-1,fromPole,withPole,toPole)
moveDisk(plates,poles,fromPole,toPole)
poles[toPole].push(poles[fromPole].pop())
moveTower(plates,poles,height-1,withPole,toPole,fromPole)
myscreen=turtle.Screen()
drawpole_3()
n=eval(input(""))
plates=creat_plates(n)
poles=pole_stack()
for i in range(n):
poles[0].push(i)
moveTower(plates,poles,n,0,2,1)
myscreen.exitonclick()
class Stack:
def __init__(self):
self.items = []
def isEmpty(self):
return len(self.items) == 0
def push(self, item):
self.items.append(item)
def pop(self):
return self.items.pop()
def peek(self):
if not self.isEmpty():
return self.items[len(self.items) - 1]
def size(self):
return len(self.items)
def drawpole_3():#画出汉诺塔的底座
t = turtle.Turtle()
t.hideturtle()
def drawpole_1(k):
t.up()
t.pensize(5)
t.speed(75)
t.goto(200*(k-1), 100)
t.down()
t.color('blue')
t.goto(200*(k-1), -100)
t.goto(200*(k-1)-20, -100)
t.goto(200*(k-1)+20, -100)
drawpole_1(0)#画出汉诺塔的A
drawpole_1(1)#画出汉诺塔的B
drawpole_1(2)#画出汉诺塔的C
def creat_plates(n):#制造n个盘
plates=[turtle.Turtle() for i in range(n)]
for i in range(n):
plates[i].up()
plates[i].color('green')
plates[i].hideturtle()
plates[i].shape("square")
plates[i].shapesize(1,9-i)
plates[i].goto(-200,-90+20*i)
plates[i].showturtle()
return plates
def pole_stack():#制造底的栈
poles=[Stack() for i in range(3)]
return poles
def moveDisk(plates,poles,fp,tp):
mov=poles[fp].peek()
plates[mov].goto((fp-1)*200,150)
plates[mov].goto((tp-1)*200,150)
l=poles[tp].size()
plates[mov].goto((tp-1)*200,-90+20*l)
def moveTower(plates,poles,height,fromPole, toPole, withPole):
if height >= 1:
moveTower(plates,poles,height-1,fromPole,withPole,toPole)
moveDisk(plates,poles,fromPole,toPole)
poles[toPole].push(poles[fromPole].pop())
moveTower(plates,poles,height-1,withPole,toPole,fromPole)
myscreen=turtle.Screen()
drawpole_3()
n=eval(input(""))
plates=creat_plates(n)
poles=pole_stack()
for i in range(n):
poles[0].push(i)
moveTower(plates,poles,n,0,2,1)
myscreen.exitonclick()
(PS:这段代码是在网上找到后稍微改的,如有侵权,请告知,立马删)
运行结果:

