SparkMLlib回归算法之决策树 (一),决策树概念 1,决策树算法(ID3,C4.5 ,CART)之间的比较: 1,ID3算法在选择根节点和各内部节点中的分支属性时,采用信息增益作为评价标准。信息增益的缺点是倾向于选择取值较多的属性,在有些情况下这类属性可能不会提供太多有价值的信息 ...
SparkMLlib分类算法之决策树学习 一 决策树的基本概念 决策树 Decision Tree 是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。En ...
2017-05-21 11:32 0 4105 推荐指数:
SparkMLlib回归算法之决策树 (一),决策树概念 1,决策树算法(ID3,C4.5 ,CART)之间的比较: 1,ID3算法在选择根节点和各内部节点中的分支属性时,采用信息增益作为评价标准。信息增益的缺点是倾向于选择取值较多的属性,在有些情况下这类属性可能不会提供太多有价值的信息 ...
决策树算法是一种归纳分类算法,它通过对 训练集的学习,挖掘出有用的 规则,用于对 新集进行 预测。在其生成过程中,分割时属性选择度量指标是关键。通过属性选择度量,选择出最好的将样本分类的属性。 å³çæ åç±»ç®æ³æ¦è¿°" width ...
数据挖掘系列(6)决策树分类算法 从这篇开始,我将介绍分类问题,主要介绍决策树算法、朴素贝叶斯、支持向量机、BP神经网络、懒惰学习算法、随机森林与自适应增强算法、分类模型选择和结果评价。总共7篇,欢迎关注和交流。 这篇先介绍分类问题的一些基本知识,然后主要讲述决策树算法的原理、实现,最后 ...
1、决策树算法 决策树用树形结构对样本的属性进行分类,是最直观的分类算法,而且也可以用于回归。不过对于一些特殊的逻辑分类会有困难。典型的如异或(XOR)逻辑,决策树并不擅长解决此类问题。 决策树的构建不是唯一的,遗憾的是最优决策树的构建属于NP问题。因此如何构建一棵好的决策树是研究的重点 ...
一、决策树的介绍 决策树是一种常见的分类模型,在金融分控、医疗辅助诊断等诸多行业具有较为广泛的应用。决策树的核心思想是基于树结构对数据进行划分,这种思想是人类处理问题时的本能方法。例如在婚恋市场中,女方通常会先看男方是否有房产,如果有房产再看是否有车产,如果有车产再看是否有稳定工作……最后得出 ...
一、决策树的原理 决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-then结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法 。 二、决策树的现实案例 相亲 ...
目录 特征选择 信息的度量和作用 信息增益 信息增益的计算 常见决策树使用的算法 sklearn决策树API 泰坦尼克号案例 决策树的优缺点以及改进 集成学习方法-随机森林 学习算法 ...
决策树学习基本算法 输入:训练集; 属性集. 过程:函数 1: 生成结点node; 2: if 中样本全属于同一类别 then 3: 将node标记为类叶结点; return 4: end if 5: if 中样本在上取值相同 then 6: 将node标记为叶 ...