目录 图神经网络的预训练与自监督学习 图神经网络简史 预训练GNN的前置条件 自监督学习 预训练GNN的技术路线 未来展望 图神经网络的预训练与自监督学习 图神经网络简史 图神经网络(GNN)2005年 ...
神经网络可以采用有监督和无监督两种方式来进行训练。传播训练算法是一种非常有效的有监督训练算法。 种传播算法如下: Backpropagation Training Quick Propagation Training QPROP Manhattan Update Rule Resilient Propagation Training RPROP Scaled Conjugate Gradient ...
2017-05-18 11:51 0 6299 推荐指数:
目录 图神经网络的预训练与自监督学习 图神经网络简史 预训练GNN的前置条件 自监督学习 预训练GNN的技术路线 未来展望 图神经网络的预训练与自监督学习 图神经网络简史 图神经网络(GNN)2005年 ...
作者: Alberto Quesada 译者: KK4SBB 责编:何永灿,关注人工智能,投稿请联系 heyc@csdn.net 或微信号 289416419 神经网络模型的每一类学习过程通常被归纳为一种训练算法。训练的算法有很多,它们的特点和性能各不相同 ...
接下来一段时间开启脉冲神经网络模型的探索之旅。脉冲神经网络有更强的生物学基础,尽可能地模拟生物神经元之间的连接和通信方式。其潜在能力较强,值得踏进一步探索。 构建脉冲神经网络模型,至少需要考虑三点:1. 外界刺激编码2. 构建神经元模型3. 制定学习规则 外界刺激的编码方式主要有 ...
的问题:(好吧,这块受训练水平的影响,还是借鉴另一篇博客的翻译:神经网络六大坑) 1,you d ...
在前面的博客人工神经网络入门和训练深度神经网络,也介绍了与本文类似的内容。前面的两篇博客侧重的是如何使用TensorFlow实现,而本文侧重相关数学公式及其推导。 1 神经网络基础 1.1 单个神经元 一个神经元就是一个计算单元,传入$n$个输入,产生一个输出,再应用于激活函数。记$n$维 ...
...
为什么要加速神经网络,数据量太大,学习效率太慢。越复杂的神经网络 , 越多的数据,需要在训练神经网络的过程上花费的时间也就越多。原因很简单,就是因为计算量太大了。可是往往有时候为了解决复杂的问题,复杂的结构和大数据又是不能避免的,所以需要寻找一些方法, 让神经网络训练变得快起来。为了便于理解 ...
神经网络训练的过程可以分为三个步骤 1.定义神经网络的结构和前向传播的输出结果 2.定义损失函数以及选择反向传播优化的算法 3.生成会话并在训练数据上反复运行反向传播优化算法 神经元 神经元是构成神经网络的最小单位,神经元的结构如下 一个神经元可以有多个输入和一个输出,每个神经 ...