1. The Problem of Overfitting 1 还是来看预测房价的这个例子,我们先对该数据做线性回归,也就是左边第一张图。 如果这么做,我们可以获得拟合数据的这样一条直线,但 ...
. The Problem of Overfitting 还是来看预测房价的这个例子,我们先对该数据做线性回归,也就是左边第一张图。 如果这么做,我们可以获得拟合数据的这样一条直线,但是,实际上这并不是一个很好的模型。我们看看这些数据,很明显,随着房子面积增大,住房价格的变化趋于稳定或者说越往右越平缓。因此线性回归并没有很好拟合训练数据。 我们把此类情况称为欠拟合 underfitting ,或 ...
2017-05-16 17:05 3 15299 推荐指数:
1. The Problem of Overfitting 1 还是来看预测房价的这个例子,我们先对该数据做线性回归,也就是左边第一张图。 如果这么做,我们可以获得拟合数据的这样一条直线,但 ...
原文链接:https://developers.google.com/machine-learning/crash-course/regularization-for-sparsity/ 1- L₁正则化 稀疏矢量通常包含许多维度。创建特征组合会导致包含更多维度。由于使用此类高维度特征矢量 ...
1. 正则化概述(Regularization) 监督学习可以简单的理解为在最小化loss function 的同时,保证模型的复杂度尽可能的低,防止出现过拟合(overfitting)。常用的loss函数有square loss(Regression),Hinge ...
我们在训练的时候经常会遇到这两种情况: 1、模型在训练集上误差很大。 2、模型在训练集上误差很小,表现不错,但是在测试集上的误差很大 我们先来分析一下这两个问题: 对于第一个问题,明显就是没有 ...
我们将讨论逻辑回归。 逻辑回归是一种将数据分类为离散结果的方法。 例如,我们可以使用逻辑回归将电子邮件分类为垃圾邮件或非垃圾邮件。 在本模块中,我们介绍分类的概念,逻辑回归的损失函数(cost functon),以及逻辑回归对多分类的应用。 我们还涉及正规化。 机器学习模型需要很好地推广到模型 ...
,并且在此之后接下来的几个视频中,我们将谈论一种称为正则化(regularization)的技术,它可以改 ...
我们在使用线性回归和逻辑斯特回归的时候,高次幂的多项式项可能造成过拟合的问题。而我们使用过拟合这一方法来改善或者减少这一问题。 我们所要做的就是使θ尽可能接近0,那么对于高阶项对于hθ(x)的影响也会尽量小,几乎没有。这样就预防了过拟合。 正则化的线性回归模型 是正则项,λ是正则化 ...
正则化(Regularization)是机器学习中抑制过拟合问题的常用算法,常用的正则化方法是在损失函数(Cost Function)中添加一个系数的\(l1 - norm\)或\(l2 - norm\)项,用来抑制过大的模型参数,从而缓解过拟合现象。 \(l1 - norm\)的正则项还具 ...