tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) 介绍参数: input:指卷积需要输入的参数,具有这样的shape[batch, in_height, in_width ...
转自http: www.cnblogs.com welhzh p .html 下面是这位博主自己的翻译加上测试心得 tf.nn.conv d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv d input, filter, strides, padding, use cudnn on gpu No ...
2017-05-09 19:50 0 96610 推荐指数:
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) 介绍参数: input:指卷积需要输入的参数,具有这样的shape[batch, in_height, in_width ...
tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None ...
方法定义 tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=True, data_format="NHWC", dilations=[1,1,1,1], name=None) 参数: input: 输入的要做 ...
下面是二维卷积函数的样例和解释,一维或更高维的卷积函数与之类似 1、tf.nn.conv2d 关键参数如下 input.shape=[batch, in_height, in_width, in_channels] filter.shape= [filter_height ...
这个函数的作用是计算激活函数 relu,即 max(features, 0)。将大于0的保持不变,小于0的数置为0。 ...
input:输入数据 filter:过滤器 strides:卷积滑动步长,实际上可以解释为过滤器的大小 padding:图像边填充方式 ...