转自:http://www.zhizhihu.com/html/y2012/4076.html分类、检索中的评价指标很多,Precision、Recall、Accuracy、F1、ROC、PR Curve...... 一、历史 wiki上说,ROC曲线最先在二战中分析雷达信号,用来检测敌军 ...
在linear model中,我们对各个特征线性组合,得到linear score,然后确定一个threshold,linear score threshold 判为负类,linear score threshold 判为正类。画PR曲线时, 我们可以想象threshold 是不断变化的。首先,threshold 特别大,这样木有一个是正类,我们计算出查全率与查准率 然后 threshold 减 ...
2017-05-08 14:54 3 13230 推荐指数:
转自:http://www.zhizhihu.com/html/y2012/4076.html分类、检索中的评价指标很多,Precision、Recall、Accuracy、F1、ROC、PR Curve...... 一、历史 wiki上说,ROC曲线最先在二战中分析雷达信号,用来检测敌军 ...
在论文的结果分析中,ROC和PR曲线是经常用到的两个有力的展示图。 1.ROC曲线 ROC曲线(receiver operating characteristic)是一种对于灵敏度进行描述的功能图像。ROC曲线可以通过描述真阳性率(TPR)和假阳性率(FPR)来实现。由于是通过比较两个操作特征 ...
注意:只是示意图,不是根据数据绘制的。。论文需要 close all; clear; clc; %% 数据 %% 画图ROC % x=0:0.01:1; % y=x; % plot(x,y,'k--'); % hold on; % theta=pi/2:0.01:pi; % X ...
python金融风控评分卡模型和数据分析微专业课(博主亲自录制视频):http://dwz.date/b9vv 初识ROC曲线 1. ROC的前世今生: ROC的全称是“受试者工作特征”(Receiver Operating Characteristic)曲线 ...
...
由于ROC曲线面积比较难求得,所以判断模型好坏一般使用AUC曲线 关于AUC曲线的绘制,西瓜书上写得比较学术,不太能理解,假设有这么一个样本集: 假设预测样本为20个,预测为正类的概率已经进行了排序,得分递减,画图步骤为: (1) 在所排序的样本最左边,画一条线即 无 ...
Machine learning.简单绘制ROC曲线 ROC曲线,又可以称之为接受者操作特征曲线(Receiver Operating Characteristic Curve),ROC曲线下的面积,称为AUC(Area Under Cureve),可以衡量评估二分类模型 ...
假设现在有一个二分类问题,先引入两个概念: 真正例率(TPR):正例中预测为正例的比例 假正例率(FPR):反例中预测为正例的比例 再假设样本数为6,现在有一个分类器1,它对样本的分类结果如下表(按预测值从大到小排序) ROC曲线的横轴为假正例率,纵轴为真正 ...