【TensorFlow】tf.nn.softmax_cross_entropy_with_logits的用法 from:https://blog.csdn.net/mao_xiao_feng/article/details/53382790 ...
In order to train our model, we need to define what it means for the model to be good. Well, actually, in machine learning we typically define what it means for a model to be bad. We call this the cos ...
2017-03-30 22:16 0 1485 推荐指数:
【TensorFlow】tf.nn.softmax_cross_entropy_with_logits的用法 from:https://blog.csdn.net/mao_xiao_feng/article/details/53382790 ...
在计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_entropy_with_logits,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化的值 tf.nn.softmax_cross_entropy_with_logits ...
1.求loss: tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None)) 第一个参数logits:就是神经网络最后一层的输出,如果有batch的话,它的大小就是[batchsize ...
Tensorflow中的交叉熵函数tensorflow中自带四种交叉熵函数,可以轻松的实现交叉熵的计算。 tf.nn.softmax_cross_entropy_with_logits() tf.nn.sparse_softmax_cross_entropy_with_logits ...
softmax实际就是将输入函数带到一个方程np.power(np.e,xi)/Σnp.power(np.e,xi)中得到,其代码如下: ...
函数:tf.nn.sparse_softmax_cross_entropy_with_logits(_sentinel=None,labels=None,logits=None,name=None) #如果遇到这个问题:Rank mismatch: Rank of labels ...
sample output ...
softmax_cross_entropy_with_logits 觉得有用的话,欢迎一起讨论相互学习~ 函数定义 解释 这个函数的作用是计算 logits 经 softmax 函数激活之后的交叉熵。 对于每个独立的分类任务,这个函数是去度量概率误差 ...