MTL 有很多形式:联合学习(joint learning)、自主学习(learning to learn)和带有辅助任务的学习(learning with auxiliary task)等。一般来说,优化多个损失函数就等同于进行多任务学习。即使只优化一个损失函数(如在典型情况下),也有可能借 ...
catalogue . 引言 x : 神经网络的分层神经元意味着什么 为了解释这个问题,我们先从一个我们熟悉的场景开始说起,电子电路的设计 如上图所示,在实践中,在解决线路设计问题 或者大多数其他算法问题 时,我们通常先考虑如何解决子问题,然后逐步地集成这些子问题的解。换句话说,我们通过多层的抽象来获得最终的解答,回到上图的电路,我们可以看到,不论多么复杂的电路功能,在最底层的底层,都是由最简单的 ...
2017-04-23 21:21 1 5186 推荐指数:
MTL 有很多形式:联合学习(joint learning)、自主学习(learning to learn)和带有辅助任务的学习(learning with auxiliary task)等。一般来说,优化多个损失函数就等同于进行多任务学习。即使只优化一个损失函数(如在典型情况下),也有可能借 ...
深度学习其实就是有更多隐层的神经网络,可以学习到更复杂的特征。得益于数据量的急剧增多和计算能力的提升,神经网络重新得到了人们的关注。 1. 符号说明 2. 激活函数 为什么神经网络需要激活函数呢?如果没有激活函数,可以推导出神经网络的输出y是关于输入x的线性组合 ...
译自:http://sebastianruder.com/multi-task/ 1. 前言 在机器学习中,我们通常关心优化某一特定指标,不管这个指标是一个标准值,还是企业KPI。为了达到这个目标,我们训练单一模型或多个模型集合来完成指定得任务。然后,我们通过精细调参,来改进模型直至 ...
一、卷积 卷积神经网络(Convolutional Neural Networks)是一种在空间上共享参数的神经网络。使用数层卷积,而不是数层的矩阵相乘。在图像的处理过程中,每一张图片都可以看成一张“薄饼”,其中包括了图片的高度、宽度和深度(即颜色,用RGB表示 ...
原址:https://blog.csdn.net/fangqingan_java/article/details/53014085 概述 循环神经网络(RNN-Recurrent Neural Network)是神经网络家族中的一员,擅长于解决序列化相关问题。包括不限于序列化标注问题、NER ...
目录 DAN(Deep Average Network) Fasttext fasttext文本分类 fasttext的n-gram模型 Doc2vec DAN(Deep Average Network) MLP ...
本文是对Arthur Juliani在Medium平台发布的强化学习系列教程的个人中文翻译。(This article is my personal translation for the tutorial written and posted by Arthur Juliani ...
4. Neural Networks (part one) Content: 4. Neural Networks (part one) 4.1 Non-linear Classification. 4.2 Neural Model(神经元模型) 4.3 ...