牛顿迭代法 牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不 ...
比二分更快的方法 如果要求一个高次方程的根,我们可以用二分法来做,这是最基础的方法了。但是有没有更好更快的方法呢 我们先来考察一个方程f x 的在点a的泰勒展开,展开到一阶就可以了 假设f x 在点a可以泰勒展开,也就是泰勒展开的那个余项在n趋于无穷时趋于 现在我们令这个一阶展开为 ,当f a 是非 值,移项一下就有 实际上当我们把f a 改成f x f a ,这就是一个过了f a 的关于f x ...
2017-03-12 22:00 0 2066 推荐指数:
牛顿迭代法 牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不 ...
用牛顿迭代法求下面方程在1.5附近的根: 答案解析: 牛顿迭代法的公式为: $x_{n+1}$ = $x_{n}$ - $\frac{f(x_{n})}{f'(x_{n})}$ 其中,$x_{n}$为输出的值,在该题目当中为1.5。$f(x_{n})$为公式2$x^3$- 4$x ...
用牛顿迭代法求下面方程在1.5附近的根: 答案解析: 牛顿迭代法的公式为: \(x_{n+1}\) = \(x_{n}\) - \(\frac{f(x_{n})}{f'(x_{n})}\) 其中,\(x_{n}\)为输出的值,在该题目当中为1.5。\(f(x_{n})\)为公式2\(x ...
第二篇随笔 9102年11月底,工科男曹**要算一个方程f(x)=0的根,其中f(x)表达式为: 因为实数范围内f(x)=0的根太多,所以本文只研究-2<x<2的情况.这个式子长的太丑了,曹**看着觉得不爽,导之,得一f'(x) 这个式子更丑,但是,我们有牛顿迭代法 ...
迭代法是用于求方程或方程组近似根的一种常用的算法设计方法。设方程为f(x)=0,用某种数学方法导出等价的形式x=g(x),然后按以下步骤执行: (1)选一个方程的近似根,赋给变量x0。 (2)将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量 ...
100个不同类型的python语言趣味编程题 在求解的过程中培养编程兴趣,拓展编程思维,提高编程能力。 第一部分:趣味算法入门;第六题 问题分析: 牛顿迭代法是取x0之后,在这个基础上,找到比x0更接近的方程的根,一步一步迭代,从而找到更接近方程的近似根。 设r是f(x ...
用牛顿迭代法求下面方程在1.5附近的根: 2\(x^3\)- 4\(x^2\) + 3\(x\) - 6= 0 答案解析: 牛顿迭代法的公式为: \(x_{n+1}\) = \(x_{n}\) - \(\frac{f(x_{n})}{f'(x_{n})}\) 其中,\(x_{n ...
牛顿迭代法求解方程的根 引题:用牛顿迭代法求下列方程在值等于x附近的根: 2 x 3 − ...