各种机器学习的应用场景分别是什么?例如,k近邻,贝叶斯,决策树,svm,逻辑斯蒂回归和最大熵模型。 k近邻,贝叶斯,决策树,svm,逻辑斯蒂回归和最大熵模型,隐马尔科夫,条件随机场,adaboost,em 这些在一般工作中,分别用到的频率多大?一般 ...
总而言之,我们可以通过问自己算法需要解决什么问题,进而发现算法的正确分类。 上面这张图包含了一些我们还没有讨论的技术术语: 分类 Classification :当数据被用来预测一个分类,监督学习也被称为分类。这是一个例子当指定一张相作为 猫 或 狗 的图片。当只有两种选择时,称为二类 two class 或二项式分类 binomialclassification 。当有更多类别的时候,当我们预测 ...
2017-03-08 09:42 0 1525 推荐指数:
各种机器学习的应用场景分别是什么?例如,k近邻,贝叶斯,决策树,svm,逻辑斯蒂回归和最大熵模型。 k近邻,贝叶斯,决策树,svm,逻辑斯蒂回归和最大熵模型,隐马尔科夫,条件随机场,adaboost,em 这些在一般工作中,分别用到的频率多大?一般 ...
第4步:特征工程 或许比选择算法更重要的是正确选择表示数据的特征。从上面的列表中选择合适的算法是相对简单直接的,然而特征工程却更像是一门艺术。 主要问题在于我们试图分类的数据在特征空间的描述极少。利如,用像素的灰度值来预测图片通常是不佳的选择;相反,我们需要找到能提高信噪比的数据变换 ...
一、模型的评估方法 (1)留出法:顾名思义,就是留出一部分作为测试样本。将已知的数据集分成两个互斥的部分,其中一部分用来训练模型,另一部分用来测试模型,评估其误差,作为泛化误差的估计。 注意: ...
机器学习算法 什么是程序(Program) 计算机程序,是指为了得到某种结果而可以由计算机(等具有信息处理能力的装置)执行的代码化指令序列(或者可以被自动转换成代码化指令序列的符号化指令序列或者符号化语句序列)。 通俗讲,计算机给人干活,但它不是人,甚至不如狗懂人的需要(《小羊肖恩 ...
转载自:http://www.cnblogs.com/tornadomeet 朴素贝叶斯: 有以下几个地方需要注意: 1. 如果给出的特征向量长度可能不同,这是需要归一化为通长度的 ...
一、属性选择: 1、理论知识: 见以下两篇文章: 数据挖掘中的特征选择算法综述及基于WEKA的性能比较_陈良龙 数据挖掘中约简技术与属性选择的研究_刘辉 2、weka中的属性选择 2.1评价策略(attribute evaluator) 总的可分为filter和wrapper方法 ...
是否在人类监督下进行训练(监督,无监督和强化学习) 在机器学习中,无监督学习就是聚类,事先不知道样本的类别,通过某种办法,把相似的样本放在一起归位一类;而监督型学习就是有训练样本,带有属性标签,也可以理解成样本有输入有输出。 所有的回归算法和分类算法都属于监督学习。回归和分类的算法区别在于输出 ...
1 KNN算法 1.1 KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类对应的关系。输入没有标签的数据后,将新数据中的每个特征与样本集中数据对应的特征进行比较 ...