原文:循环神经网络(RNN)模型与前向反向传播算法

在前面我们讲到了DNN,以及DNN的特例CNN的模型和前向反向传播算法,这些算法都是前向反馈的,模型的输出和模型本身没有关联关系。今天我们就讨论另一类输出和模型间有反馈的神经网络:循环神经网络 Recurrent Neural Networks ,以下简称RNN ,它广泛的用于自然语言处理中的语音识别,手写书别以及机器翻译等领域。 . RNN概述 在前面讲到的DNN和CNN中,训练样本的输入和输 ...

2017-03-06 19:57 166 118160 推荐指数:

查看详情

关于 RNN 循环神经网络反向传播求导

关于 RNN 循环神经网络反向传播求导 本文是对 RNN 循环神经网络中的每一个神经元进行反向传播求导的数学推导过程,下面还使用 PyTorch 对导数公式进行编程求证。 RNN 神经网络架构 一个普通的 RNN 神经网络如下图所示: 其中 \(x^{\langle t ...

Tue Jan 12 04:19:00 CST 2021 0 991
神经网络传播反向传播

神经网络 神经网络可以理解为一个输入x到输出y的映射函数,即f(x)=y,其中这个映射f就是我们所要训练的网络参数w,我们只要训练出来了参数w,那么对于任何输入x,我们就能得到一个与之对应的输出y。只要f不同,那么同一个x就会产生不同的y,我们当然是想要获得最符合真实数据的y,那么我们就要训练 ...

Wed Sep 16 04:50:00 CST 2020 0 675
神经网络中的参数的求解:向和反向传播算法

神经网络最基本的知识可以参考神经网络基本知识,基本的东西说的很好了,然后这里讲一下神经网络中的参数的求解方法。 注意一次的各单元不需要与后一层的偏置节点连线,因为偏置节点不需要有输入也不需要sigmoid函数得到激活值,或者认为激活值始终是1. 一些变量解释: 标上“”的圆圈被称为 ...

Tue Dec 30 22:09:00 CST 2014 0 13623
深度神经网络(DNN)模型传播算法

    深度神经网络(Deep Neural Networks, 以下简称DNN)是深度学习的基础,而要理解DNN,首先我们要理解DNN模型,下面我们就对DNN的模型传播算法做一个总结。 1. 从感知机到神经网络     在感知机原理小结中,我们介绍过感知机的模型,它是一个有若干输入 ...

Mon Feb 20 23:08:00 CST 2017 34 142488
神经网络的梯度推导与代码验证》之vanilla RNN传播反向梯度推导

在本篇章,我们将专门针对vanilla RNN,也就是所谓的原始RNN这种网络结构进行前向传播介绍和反向梯度推导。更多相关内容请见《神经网络的梯度推导与代码验证》系列介绍。 注意: 本系列的关注点主要在反向梯度推导以及代码上的验证,涉及到的传播相对而言不会做太详细的介绍 ...

Sat Sep 05 01:26:00 CST 2020 4 354
详解神经网络传播反向传播(从头推导)

详解神经网络传播反向传播本篇博客是对Michael Nielsen所著的《Neural Network and Deep Learning》第2章内容的解读,有兴趣的朋友可以直接阅读原文Neural Network and Deep Learning。   对神经网络有些了解的人 ...

Sun Nov 14 07:22:00 CST 2021 0 179
神经网络传播FP和反向传播BP

1 神经网络 神经网络就是将许多个单一“神经元”联结在一起,这样,一个“神经元”的输出就可以是另一个“神经元”的输入。例如,下图就是一个简单的神经网络: 我们使用圆圈来表示神经网络的输入,标上“”的圆圈被称为偏置节点,也就是截距项。神经网络最左边的一层叫做输入层,最右 ...

Sat Jul 28 00:52:00 CST 2018 0 2024
神经网络反向传播算法实现

1 神经网络模型 以下面神经网络模型为例,说明神经网络中正向传播反向传播过程及代码实现 1.1 正向传播 (1)输入层神经元\(i_1,i_2\),输入层到隐藏层处理过程 \[HiddenNeth_1 = w_1i_1+w_2i_2 + b_1 ...

Thu Jul 04 03:13:00 CST 2019 0 1337
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM