摘要: 1.算法概述 2.算法要点与推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 6.适用场合 内容: 1.算法概述 FTRL是一种适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法,方便实用,而且效果很好,常用于更新 ...
Online gradient descent OGD produces excellent prediction accuracy with a minimum of computing resources.However, in practice another key consideration is the size of the final model Since models can ...
2017-03-01 14:51 0 1796 推荐指数:
摘要: 1.算法概述 2.算法要点与推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 6.适用场合 内容: 1.算法概述 FTRL是一种适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法,方便实用,而且效果很好,常用于更新 ...
在线学习想要解决的问题 在线学习 ( \(\it{Online \;Learning}\) ) 代表了一系列机器学习算法,特点是每来一个样本就能训练,能够根据线上反馈数据,实时快速地进行模型调整,使得模型及时反映线上的变化,提高线上预测的准确率。相比之下,传统的批处理方式需要一次性收集所有 ...
今天讲一讲分布式系统中必不可少的选举算法。 leader 就是一堆服务器中的协调者,某一个时刻只能有一个leader且所有服务器都承认这个leader. leader election就是在一组进程中,选举一个leader且让该组的进程都同意这个leader. 假设有N个process, 每个 ...
记录一下对Raft算法的理解,算法的内容比较多,所以准备将算法的全部过程分成四个部分来写。分别是 Raft算法之Leader选举 Raft算法之日志复制 Raft算法之成员关系变化 Raft算法之日志压缩 该文章为第一部分。 Raft算法之Leader选举 简单 ...
Alink漫谈(十三) :在线学习算法FTRL 之 具体实现 目录 Alink漫谈(十三) :在线学习算法FTRL 之 具体实现 0x00 摘要 0x01 回顾 0x02 在线训练 2.1 预置模型 ...
Alink漫谈(十二) :在线学习算法FTRL 之 整体设计 目录 Alink漫谈(十二) :在线学习算法FTRL 之 整体设计 0x00 摘要 0x01概念 1.1 逻辑回归 1.1.1 ...
转自:http://www.cnblogs.com/mindwind/p/5231986.html Raft 协议的易理解性描述 虽然 Raft 的论文比 Paxos 简单版论文 ...
,google先后三年时间(2010年-2013年)从理论研究到实际工程化实现的FTRL(Follow-the-r ...