原文:【机器学习】--非参数估计实验 parzen窗以及k-近邻概率密度

一.实验题目 所用参考教材: 模式分类 机械工业出版社 李宏东 姚天翔等译 .考虑对于表格中的数据进行parzen窗估计和设计分类器,窗函数为一个球形的高斯函数, lt a gt 编写程序,使用parzen窗估计方法对一个任意的样本点x进行分类。对分类器的训练则使用表格中的三维数据。同时令h ,分类样本点为 . , . , . , . , , , . , . , . , . lt b gt 现在我 ...

2017-02-27 16:23 2 6294 推荐指数:

查看详情

参数估计——核密度估计Parzen

  核密度估计,或Parzen,是非参数估计概率密度的一种。比如机器学习中还有K近邻法也是非参估计的一种,不过K近邻通常是用来判别样本类别的,就是把样本空间每个点划分为与其最接近的K个训练抽样中,占比最高的类别。 直方图   首先从直方图切入。对于随机变量$X$的一组抽样,即使$X$的值 ...

Sun Apr 12 04:54:00 CST 2020 4 5172
概率密度估计笔记——参数估计

主要解决在样本的分布没有足够的先验,也就是说我们不仅不知道分布的参数,连是什么类型的分布都不知道,这种情况下显然不能用参数估计的方法。这里从简单直观的方法——直方图法入手,引出KNN和Parzen两种方法。 直方图密度估计:出发点是分布函数 ,假设在某一个很小很小的超立方体V中是均匀分布 ...

Sun Mar 20 18:39:00 CST 2016 0 2000
概率密度估计--参数估计参数估计

我们观测世界,得到了一些数据,我们要从这些数据里面去找出规律来认识世界,一般来说,在概率上我们有一个一般性的操作步骤 1. 观测样本的存在 2. 每个样本之间是独立的 3. 所有样本符合一个概率模型 我们最终想要得到的是一个概率密度的模型,有了概率密度模型以后,我们就可以统计 ...

Fri Oct 07 22:59:00 CST 2016 2 6853
机器学习K-近邻算法

  机器学习可分为监督学习和无监督学习。有监督学习就是有具体的分类信息,比如用来判定输入的是输入[a,b,c]中的一类;无监督学习就是不清楚最后的分类情况,也不会给目标值。   K-近邻算法属于一种监督学习分类算法,该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本 ...

Tue Apr 05 07:39:00 CST 2016 0 2509
机器学习笔记--参数估计

我们进行参数估计的方法一般主要有最大似然估计和贝叶斯估计。这里提一下两种估计的门派来加深理解: 最大似然估计属于统计学里的频率学派。频率派从事件本身出发,认定事件本身是随机的。事件在重复试验中发生的频率趋于极限时,这个极限就是该事件的概率。事件的概率一般设为随机变量,当变量为离散变量时 ...

Mon Mar 11 04:59:00 CST 2019 2 441
机器学习(一)——K-近邻(KNN)算法

最近在看《机器学习实战》这本书,因为自己本身很想深入的了解机器学习算法,加之想学python,就在朋友的推荐之下选择了这本书进行学习。 一 . K-近邻算法(KNN)概述 最简单最初级的分类器是将全部的训练数据所对应的类别都记录下来,当测试对象的属性和某个训练对象的属性 ...

Wed Aug 05 01:14:00 CST 2015 23 260675
k-近邻算法原理入门-机器学习

//2019.08.01下午机器学习算法1——k近邻算法1、k近邻算法是学习机器学习算法最为经典和简单的算法,它是机器学习算法入门最好的算法之一,可以非常好并且快速地理解机器学习的算法的框架与应用。2、kNN机器学习算法具有以下的特点:(1)思想极度简单(2)应用的数学知识非常少(3)解决相关问题 ...

Fri Aug 02 00:30:00 CST 2019 0 495
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM