原文:FTRL与Online Optimization

. 背景介绍 最优化求解问题可能是我们在工作中遇到的最多的一类问题了:从已有的数据中提炼出最适合的模型参数,从而对未知的数据进行预测。当我们面对高维高数据量的场景时,常见的批量处理的方式已经显得力不从心,需要有在线处理的方法来解决此类问题。 在CTR预估中,经常会用到经典的逻辑回归 LR ,而对LR的各维度参数进行估计的时候会用到最优化算法,常见的比如梯度下降 Gradient Descent ...

2017-02-12 15:47 0 1812 推荐指数:

查看详情

在线最优化求解(Online Optimization)之五:FTRL

在线最优化求解(Online Optimization)之五:FTRL 在上一篇博文中中我们从原理上定性比较了L1-FOBOS和L1-RDA在稀疏性上的表现。有实验证明,L1-FOBOS这一类基于梯度下降的方法有比较高的精度,但是L1-RDA却能在损失一定精度的情况下产生更好的稀疏性 ...

Thu Jul 30 03:53:00 CST 2015 0 2396
在线最优化求解(Online Optimization)之三:FOBOS

在线最优化求解(Online Optimization)之三:FOBOS FOBOS (Forward-Backward Splitting)是由John Duchi和Yoram Singer提出的[11]。从全称上来看,该方法应该叫FOBAS,但是由于一开始作者管这种方法叫FOLOS ...

Thu Jul 30 03:52:00 CST 2015 0 2220
FTRL代码实现

FTRL(Follow The Regularized Leader)是一种优化方法,就如同SGD(Stochastic Gradient Descent)一样。这里直接给出用FTRL优化LR(Logistic Regression)的步骤: 其中$p_t=\sigma(X_t\cdot w ...

Mon May 15 06:15:00 CST 2017 0 6605
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM