在Apriori算法原理总结中,我们对Apriori算法的原理做了总结。作为一个挖掘频繁项集的算法,Apriori算法需要多次扫描数据,I/O是很大的瓶颈。为了解决这个问题,FP Tree算法(也称FP Growth算法)采用了一些技巧,无论多少数据,只需要扫描两次数据集,因此提高了算法 ...
在FP Tree算法原理总结和PrefixSpan算法原理总结中,我们对FP Tree和PrefixSpan这两种关联算法的原理做了总结,这里就从实践的角度介绍如何使用这两个算法。由于scikit learn中没有关联算法的类库,而Spark MLlib有,本文的使用以Spark MLlib作为使用环境。 .Spark MLlib关联算法概述 在Spark MLlib中,也只实现了两种关联算法, ...
2017-01-22 14:24 24 9289 推荐指数:
在Apriori算法原理总结中,我们对Apriori算法的原理做了总结。作为一个挖掘频繁项集的算法,Apriori算法需要多次扫描数据,I/O是很大的瓶颈。为了解决这个问题,FP Tree算法(也称FP Growth算法)采用了一些技巧,无论多少数据,只需要扫描两次数据集,因此提高了算法 ...
在Apriori算法原理总结中,我们对Apriori算法的原理做了总结。作为一个挖掘频繁项集的算法,Apriori算法需要多次扫描数据,I/O是很大的瓶颈。为了解决这个问题,FP Tree算法(也称FP Growth算法)采用了一些技巧,无论多少数据,只需要扫描两次数据集,因此提高了算法运行 ...
在关联规则挖掘领域最经典的算法法是Apriori,其致命的缺点是需要多次扫描事务数据库。于是人们提出了各种裁剪(prune)数据集的方法以减少I/O开支,韩嘉炜老师的FP-Tree算法就是其中非常高效的一种。 名词约定 举个例子,设事务数据库为: 每一行为一个 ...
前面我们讲到频繁项集挖掘的关联算法Apriori和FP Tree。这两个算法都是挖掘频繁项集的。而今天我们要介绍的PrefixSpan算法也是关联算法,但是它是挖掘频繁序列模式的,因此要解决的问题目标稍有不同。 1. 项集数据和序列数据 首先我们看看项集数据和序列数据 ...
我就不说FP-Tree的作用、优点什么的了,直接用例子来解释构建FP-Tree和找出所有频繁项集,第一次写博客,不对之处还请指出。 输入文件: testInput.txt 先计算所有数据的单项的支持度计数,计算后为{1,(支持度计数:6)} {2,(支持度计数 ...
本来老师是想让我学Hadoop的,也装了Ubuntu,配置了Hadoop,一时间却不知从何学起,加之自己还是想先看点自己喜欢的算法,学习Hadoop也就暂且搁置了,不过还是想问一下园子里的朋友有什么学习Hadoop好点的资料,求推荐~言归正传,继Apriori算法之后,今天来学习 ...
使用场景如: 用户频道属性分析 、用户忠诚度分析 、用户偏好路径分析、 用户偏好终端分析、 用户访问网站时间分析、 用户浏览内容分析 例子:一用户某次访问网站的路径示意图 Apriori算法 ...
但是用FP_growth算法只要6分钟就可以了,效率非常明显。它的核心是FP_tree,一种树型数据结构,特点是尽量把相同 ...