原文:机器学习之sklearn——主题模型

from gensim import corpora, models corpus只截取了一部分 lsi models.LsiModel corpus tfidf, num topics , id word dic 将文本的tfidf向量输入生成Lsi模型,num topics为生成主题个数,也为Lsi进行SVD分解时,生成矩阵列向量数 id word是语料字典 topic result a fo ...

2017-01-11 10:18 0 3218 推荐指数:

查看详情

主题模型--机器学习

摘要:   两篇文档是否相关往往不只决定于字面上的词语重复,还取决于文字背后的语义关联。对语义关联的挖掘,可以让我们的搜索更加智能化。本文着重介绍了一个语义挖掘的利器:主题模型主题模型是对文字隐含主题进行建模的方法。它克服了传统信息检索中文档相似度计算方法的缺点,并且能够在海量 ...

Mon Feb 18 07:20:00 CST 2019 0 632
机器学习sklearn(三十):模型保存

在训练完 scikit-learn 模型之后,最好有一种方法来将模型持久化以备将来使用,而无需重新训练。 以下部分为您提供了有关如何使用 pickle 来持久化模型的示例。 在使用 pickle 序列化时,我们还将回顾一些安全性和可维护性方面的问题。 pickle的另一种方法是使用相关项目中列出 ...

Sun Jun 20 21:06:00 CST 2021 0 187
sklearn机器学习模型的保存与加载

需求: 一直写的代码都是从加载数据,模型训练,模型预测,模型评估走出来的,但是实际业务线上咱们肯定不能每次都来训练模型,而是应该将训练好的模型保存下来 ,如果有新数据直接套用模型就行了吧?现在问题就是怎么在实际业务中保存模型,不至于每次都来训练,在预测。 解决方案: 机器学习-训练模型 ...

Tue Dec 19 02:49:00 CST 2017 0 1628
机器学习-LDA主题模型笔记

LDA常见的应用方向:   信息提取和搜索(语义分析);文档分类/聚类、文章摘要、社区挖掘;基于内容的图像聚类、目标识别(以及其他计算机视觉应用);生物信息数据的应用; 对于朴素贝叶斯模型来说,可以胜任许多文本分类问题,但无法解决语料中一词多义和多词一义的问题--它更像是词法分析,而非语义分析 ...

Thu Oct 10 20:42:00 CST 2019 0 514
机器学习使用sklearn进行模型训练、预测和评价

cross_val_score(model_name, x_samples, y_labels, cv=k) 作用:验证某个模型在某个训练集上的稳定性,输出k个预测精度。 K折交叉验证(k-fold) 把初始训练样本分成k份,其中(k-1)份被用作训练集,剩下一份被用作评估集,这样一共可以对 ...

Fri Dec 21 18:22:00 CST 2018 0 2756
机器学习之使用sklearn构造决策树模型

一、任务基础 导入所需要的库 import matplotlib.pyplot as plt import pandas as pd %matplotlib inline 加载sklearn内置数据集 ,查看数据描述 from ...

Tue Jul 30 17:19:00 CST 2019 0 884
Spark机器学习(8):LDA主题模型算法

进行,就可以生成一篇文档;反过来,LDA又是一种非监督机器学习技术,可以识别出大规模文档集或语料库中的主 ...

Wed Jul 12 20:19:00 CST 2017 0 2233
猪猪的机器学习笔记(十五)主题模型

主题模型 作者:樱花猪 摘要: 本文为七月算法(julyedu.com)12月机器学习第十五次课在线笔记。主题模型是对文字隐含主题进行建模的方法。它克服了传统信息检索中文档相似度计算方法的缺点,并且能够在海量互联网数据中自动寻找出文字间的语义主题主题模型在自然语言和基于文本 ...

Sat May 07 00:13:00 CST 2016 0 4546
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM