原文:[机器学习]-SVD奇异值分解的基本原理和运用

SVD奇异值分解: SVD是一种可靠的正交矩阵分解法。可以把A矩阵分解成U, ,VT三个矩阵相乘的形式。 Svd A U VT ,A不必是方阵,U,VT必定是正交阵,S是对角阵 lt 以奇异值为对角线,其他全为 gt 用途: 信息检索 LSA:隐性语义索引,LSA:隐性语义分析 ,分解后的奇异值代表了文章的主题或者概念,信息检索的时候同义词,或者说同一主题下的词会映射为同一主题,这样就可以提高搜索 ...

2016-12-22 19:45 1 5841 推荐指数:

查看详情

[机器学习笔记]奇异值分解SVD简介及其在推荐系统中的简单应用

本文先从几何意义上对奇异值分解SVD进行简单介绍,然后分析了特征分解奇异值分解的区别与联系,最后用python实现将SVD应用于推荐系统。 1.SVD详解 SVD(singular value decomposition),翻译成中文就是奇异值分解SVD的用处有很多,比如:LSA(隐性 ...

Sat Mar 05 04:40:00 CST 2016 2 47422
奇异值分解(SVD)原理及应用

一、奇异与特征基础知识: 特征分解奇异值分解机器学习领域都是属于满地可见的方法。两者有着很紧密的关系,我在接下来会谈到,特征分解奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征。先谈谈特征分解吧: 1)特征: 如果说一个向量v ...

Sat Oct 06 05:14:00 CST 2018 0 4057
奇异值分解SVD原理

转:https://blog.csdn.net/u013108511/article/details/79016939   奇异值分解是一个有着很明显的物理意义的一种方法,它可以将一个比较复杂的矩阵用更小更简单的几个子矩阵的相乘来表示 ...

Sun Jul 14 23:57:00 CST 2019 0 2186
奇异值分解SVD

0 - 特征分解(EVD) 奇异值分解之前需要用到特征分解,回顾一下特征分解。 假设$A_{m \times m}$是一个是对称矩阵($A=A^T$),则可以被分解为如下形式, $$A_{m\times m}=Q_{m\times m}\Sigma_{m\times m} Q_{m ...

Sun Oct 20 22:57:00 CST 2019 0 404
奇异值分解SVD

奇异值分解   特征分解是一个提取矩阵特征很不错的方法,但是它只是对方阵而言的,在现实的世界中,我们看到的大部分矩阵都不是方阵。  奇异值分解基本定理:若 $ A$ 为 $ m \times n$ 实矩阵, 则 $ A$ 的奇异值分解存在   $A=U \Sigma V^{T ...

Sun Oct 03 00:35:00 CST 2021 1 150
奇异值分解(SVD)

奇异值分解(SVD) 特征与特征向量 对于一个实对称矩阵\(A\in R^{n\times n}\),如果存在\(x\in R^n\)和\(\lambda \in R\)满足: \[\begin{align} Ax=\lambda x \end{align} \] 则我们说 ...

Mon Nov 08 17:47:00 CST 2021 0 122
奇异值分解SVD

文档链接:http://files.cnblogs.com/files/bincoding/%E5%A5%87%E5%BC%82%E5%80%BC%E5%88%86%E8%A7%A3.zip 强大的矩阵奇异值分解(SVD)及其应用 版权声明: 本文由LeftNotEasy发布 ...

Wed May 24 00:01:00 CST 2017 0 1718
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM