http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/1939687.html 机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用 版权声明: 本文由LeftNotEasy发布于http ...
SVD奇异值分解: SVD是一种可靠的正交矩阵分解法。可以把A矩阵分解成U, ,VT三个矩阵相乘的形式。 Svd A U VT ,A不必是方阵,U,VT必定是正交阵,S是对角阵 lt 以奇异值为对角线,其他全为 gt 用途: 信息检索 LSA:隐性语义索引,LSA:隐性语义分析 ,分解后的奇异值代表了文章的主题或者概念,信息检索的时候同义词,或者说同一主题下的词会映射为同一主题,这样就可以提高搜索 ...
2016-12-22 19:45 1 5841 推荐指数:
http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/1939687.html 机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用 版权声明: 本文由LeftNotEasy发布于http ...
本文先从几何意义上对奇异值分解SVD进行简单介绍,然后分析了特征值分解与奇异值分解的区别与联系,最后用python实现将SVD应用于推荐系统。 1.SVD详解 SVD(singular value decomposition),翻译成中文就是奇异值分解。SVD的用处有很多,比如:LSA(隐性 ...
一、奇异值与特征值基础知识: 特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法。两者有着很紧密的关系,我在接下来会谈到,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征。先谈谈特征值分解吧: 1)特征值: 如果说一个向量v ...
转:https://blog.csdn.net/u013108511/article/details/79016939 奇异值分解是一个有着很明显的物理意义的一种方法,它可以将一个比较复杂的矩阵用更小更简单的几个子矩阵的相乘来表示 ...
0 - 特征值分解(EVD) 奇异值分解之前需要用到特征值分解,回顾一下特征值分解。 假设$A_{m \times m}$是一个是对称矩阵($A=A^T$),则可以被分解为如下形式, $$A_{m\times m}=Q_{m\times m}\Sigma_{m\times m} Q_{m ...
奇异值分解 特征值分解是一个提取矩阵特征很不错的方法,但是它只是对方阵而言的,在现实的世界中,我们看到的大部分矩阵都不是方阵。 奇异值分解基本定理:若 $ A$ 为 $ m \times n$ 实矩阵, 则 $ A$ 的奇异值分解存在 $A=U \Sigma V^{T ...
奇异值分解(SVD) 特征值与特征向量 对于一个实对称矩阵\(A\in R^{n\times n}\),如果存在\(x\in R^n\)和\(\lambda \in R\)满足: \[\begin{align} Ax=\lambda x \end{align} \] 则我们说 ...
文档链接:http://files.cnblogs.com/files/bincoding/%E5%A5%87%E5%BC%82%E5%80%BC%E5%88%86%E8%A7%A3.zip 强大的矩阵奇异值分解(SVD)及其应用 版权声明: 本文由LeftNotEasy发布 ...