神经网络与机器学习 第5章 随机梯度下降法-BP的起源 神经网络的训练有很多方法,以数值优化为基础的随机梯度学习算法能够处理大规模的数据集合,它也是后面多层神经网络后向传播算法的基础。 随机梯度下降是以均方误差为目标函数的近似最速下降算法,该算法被广泛用于自适应信号处理领域 ...
本文总结自 Neural Networks and Deep Learning 第 章的部分内容。 使用梯度下降算法进行学习 Learning with gradient descent . 目标 我们希望有一个算法,能让我们找到权重和偏置,以至于网络的输出y x 能够拟合所有的训练输入x。 . 代价函数 cost function 定义一个Cost function loss function, ...
2016-12-10 22:35 0 4390 推荐指数:
神经网络与机器学习 第5章 随机梯度下降法-BP的起源 神经网络的训练有很多方法,以数值优化为基础的随机梯度学习算法能够处理大规模的数据集合,它也是后面多层神经网络后向传播算法的基础。 随机梯度下降是以均方误差为目标函数的近似最速下降算法,该算法被广泛用于自适应信号处理领域 ...
1. 损失函数 在线性回归分析中,假设我们的线性回归模型为: 样本对应的正确数值为: 现在假设判别函数的系数都找出来了,那么通过判别函数G(x),我们可以预测是样本x对的值为。那这个跟 ...
BP神经网络梯度下降算法 目录(?)[+] 菜鸟初学人智相关问题,智商低,艰苦学习中,转文只为保存,其中加上了一些个人注释,便于更简单的理解~新手也可以看,共勉。 转自博客园@ 编程De: http ...
https://blog.csdn.net/weixin_38206214/article/details/81143894 在深度学习的路上,从头开始了解一下各项技术。本人是DL小白,连续记录我自己看的一些东西,大家可以互相交流。本文参考:本文参考吴恩达老师的Coursera深度学习课程,很棒 ...
在求解神经网络算法的模型参数,梯度下降(Gradient Descent)是最常采用的方法。下面是我个人学习时对梯度下降的理解,如有不对的地方欢迎指出。 1、✌ 梯度定义 微积分我们学过,对多元函数的各个变量求偏导数,把求得的各个参数的偏导数以向量的形式 ...
不多说,直接上干货! 回归与梯度下降 回归在数学上来说是给定一个点集,能够用一条曲线去拟合之,如果这个曲线是一条直线,那就被称为线性回归,如果曲线是一条二次曲线,就被称为二次回归,回归还有很多的变种,如本地加权回归、逻辑回归,等等。 用一个 ...
上使用梯度下降算法。 从而神经网络模型在训练数据的孙师函数尽可能小。 --反向传播算法是训练神经网络的 ...