研究生课程系列文章参见索引《在信科的那些课》 基本原理 假定已给两个数据集P、Q, ,给出两个点集的空间变换f使他们能进行空间匹配。这里的问题是,f为一未知函数,而且两点集中的点数不一定相同。解决这个问题使用的最多的方法是迭代最近点法(Iterative Closest Points ...
标签: 图像匹配ICP算法机器视觉 : 人阅读 评论 收藏 举报 分类: Computer Vision 版权声明:本文为博主原创文章,未经博主允许不得转载。 最近在做点云匹配,需要用c 实现ICP算法,下面是简单理解,期待高手指正。 ICP算法能够使不同的坐标下的点云数据合并到同一个坐标系统中,首先是找到一个可用的变换,配准操作实际是要找到从坐标系 到坐标系 的一个刚性变换。 ICP算法本质上 ...
2016-12-03 19:40 5 17158 推荐指数:
研究生课程系列文章参见索引《在信科的那些课》 基本原理 假定已给两个数据集P、Q, ,给出两个点集的空间变换f使他们能进行空间匹配。这里的问题是,f为一未知函数,而且两点集中的点数不一定相同。解决这个问题使用的最多的方法是迭代最近点法(Iterative Closest Points ...
图像配准是图像处理研究领域中的一个典型问题和技术难点,其目的在于比较或融合针对同一对象在不同条件下获取的图像,例如图像会来自不同的采集设备,取自不同的时间,不同的拍摄视角等等,有时也需要用到针对不 ...
参考博客:http://www.cnblogs.com/21207-iHome/p/6034462.html 最近在做点云匹配,需要用c++实现ICP算法,下面是简单理解,期待高手指正。 ICP算法能够使不同的坐标下的点云数据合并到同一个坐标系统中,首先是找到一个可用的变换,配准操作实际 ...
1.Iterative Closest Points算法 点云数据配准最经典的方法是迭代最近点算法(Iterative Closest Points,ICP)。ICP算法是一个迭代的过程,每次迭代中对于源数据点P找到目标点集Q中的最近点,然后给予最小二乘原理求解当前的变换 ...
雅克比迭代,一般用来对线性方程组,进行求解。形如: \(a_{11}*x_{1} + a_{12}*x_{2} + a_{13}*x_{3} = b_{1}\) \(a_{21}*x_{1} + a_{22}*x_{2} + a_{23}*x_{3} = b_{2}\) \(a_{31 ...
ICP(Iterative Closest Point),即迭代最近点算法,是经典的数据配准算法。其特征在于,通过求取源点云和目标点云之间的对应点对,基于对应点对构造旋转平移矩阵,并利用所求矩阵,将源点云变换到目标点云的坐标系下,估计变换后源点云与目标点云的误差函数,若误差函数值大于阀值,则迭代 ...
ICP 算法是一种点云到点云的3D-3D配准方法。 在SLAM中通过空间点云的配准(可以通过相机或者3D激光雷达获取点云数据),可以估计相机运动(机器人运动,旋转矩阵R与平移向量t),累积配准,并不断回环检测,可以保证机器人定位的精度。 想象三维空间中两组点云PL(参考点云,固定不动 ...
特征点检测广泛应用到目标匹配、目标跟踪、三维重建等应用中,在进行目标建模时会对图像进行目标特征的提取,常用的有颜色、角点、特征点、轮廓、纹理等特征。现在开始讲解常用的特征点检测,其中Harris角点检 ...