1. 损失函数 在线性回归分析中,假设我们的线性回归模型为: 样本对应的正确数值为: 现在假设判别函数的系数都找出来了,那么通过判别函数G(x),我们可以预测是样本x对的值为。那这个跟 ...
测试代码 如下: clear load E: dataset USPS USPS.mat data format: Xtr n dim Xte n dim Ytr n Yte n warning: labels must range from to n, n is the number of labels other label values will make mistakes u uniqu ...
2016-11-18 15:42 0 3472 推荐指数:
1. 损失函数 在线性回归分析中,假设我们的线性回归模型为: 样本对应的正确数值为: 现在假设判别函数的系数都找出来了,那么通过判别函数G(x),我们可以预测是样本x对的值为。那这个跟 ...
从上个月专攻机器学习,从本篇开始,我会陆续写机器学习的内容,都是我的学习笔记。 问题 梯度下降算法用于求数学方程的极大值极小值问题,这篇文章讲解如何利用梯度下降算法求解方程 \(x^5+e^x+3x−3=0\) 的根; 方法 首先来解决第一个问题,从方程的形式我们就能初步判断,它很可能 ...
梯度下降算法是通过沿着目标函数J(θ)参数θ∈R的梯度(一阶导数)相反方向−∇θJ(θ)来不断更新模型参数来到达目标函数的极小值点(收敛),更新步长为η。有三种梯度下降算法框架,它们不同之处在于每次学习(更新模型参数)使用的样本个数,每次更新使用不同的样本会导致每次学习的准确性和学习时间 ...
不多说,直接上干货! 回归与梯度下降 回归在数学上来说是给定一个点集,能够用一条曲线去拟合之,如果这个曲线是一条直线,那就被称为线性回归,如果曲线是一条二次曲线,就被称为二次回归,回归还有很多的变种,如本地加权回归、逻辑回归,等等。 用一个 ...
梯度下降法先随机给出参数的一组值,然后更新参数,使每次更新后的结构都能够让损失函数变小,最终达到最小即可。在梯度下降法中,目标函数其实可以看做是参数的函数,因为给出了样本输入和输出值后,目标函数就只剩下参数部分了,这时可以把参数看做是自变量,则目标函数变成参数的函数了。梯度下降每次都是更新每个参数 ...
由于第一次实验的实验报告不在这台机器,先写这一算法吧。 SGDLR(the Stochastic Gradient Descent for Logistic Regression),要讲解这一算法,首先要把名字拆为几块。 1 随机 2 梯度下降 3逻辑回归 先贴一篇文章:http ...
一、梯度gradient http://zh.wikipedia.org/wiki/%E6%A2%AF%E5%BA%A6 在标量场f中的一点处存在一个矢量G,该矢量方向为f在该点处变化率最大的方向,其模也等于这个最大变化率的数值,则矢量G称为标量场f的梯度。 在向量微积分中,标量场的梯度 ...