MIL陷入局部最优,检测到局部,无法完整的检测到物体。将instance划分为空间相关和类别相关的子集。在这些子集中定义一系列平滑的损失近似代替原损失函数,优化这些平滑损失。 C-MIL learns instance subsets, where the instances ...
多示例学习:包 bags 和 示例 instance . 包是由多个示例组成的,举个例子,在图像分类中,一张图片就是一个包,图片分割出的patches就是示例。在多示例学习中,包带有类别标签而示例不带类别标签,最终的目的是给出对新的包的类别预测。 多示例学习是弱监督学习中的一个popular的方法。用于训练分类器的instance是没有类别标记的,但是bags却是有类别标记的,这一点与以往所有框架 ...
2016-11-16 22:10 1 8068 推荐指数:
MIL陷入局部最优,检测到局部,无法完整的检测到物体。将instance划分为空间相关和类别相关的子集。在这些子集中定义一系列平滑的损失近似代替原损失函数,优化这些平滑损失。 C-MIL learns instance subsets, where the instances ...
这篇论文主要介绍了如何使用图片级标注对像素级分割任务进行训练。想法很简单却达到了比较好的效果。文中所提到的loss比较有启发性。 大体思路: 首先同FCN一样,这个网络只有8层(5层VGG,3层全 ...
联邦学习也称为协同学习,它可以在产生数据的设备上进行大规模的训练,并且这些敏感数据保留在数据的所有者那里,本地收集、本地训练。在本地训练后,中央的训练协调器通过获取分布模型的更新获得每个节点的训练贡献,但是不访问实际的敏感数据。 联邦学习本身并不能保证隐私(稍后我们将讨论联邦学习系统中的隐私破坏 ...
linux运行springboot项目,重启后第一次访问非常慢 日志打印 Creation of SecureRandom instance for session ID generation using [SHA1PRNG] took [21,543] milliseconds. 有两种 ...
一, Introduction 二, Evaluation ...
向多专家学习:用于长尾分类的自定步长知识提炼 目录 向多专家学习:用于长尾分类的自定步长知识提炼 Introduction Related Work 评估数据不平衡的动机和指标 讨论 实验 5.1 ...
Deep Learning(深度学习)最近火爆的不行,不论是以NIPS,ICML,CVPR这些top conference为代表的学术界,还是以Google,Microsoft,IBM为代表的工业界,都加入到了轰轰烈烈的深度学习行列中。在可以预见的相当长一段时间内,Deep Learning依然 ...
原文链接:https://blog.csdn.net/cao812755156/article/details/89598410 https://zhuanlan.zhihu.com/p/79284686 联邦学习简介 联邦学习(Federated Learning)是一种新兴的人工智能基础 ...